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Abstract 
This study presents the design of a robust nonlinear model predictive controller (NMPC) for the absorber unit of a 

post-combustion CO2 capture process operating downstream from a coal-fired power plant. The controller employs a 

dynamic mechanistic model for this process, which allows for a precise treatment of the sources of uncertainty. In the 

case of the absorber, the model enables explicit consideration of uncertainty in the process operating conditions 

dictated by upstream units and in physical property parameters associated with phenomenological descriptions of the 

process. Using the multi-scenario approach, discrete realizations of the uncertain parameters inside a given uncertainty 

region can be incorporated into the controller to produce control actions that result in a robust operation in closed-

loop. The multi-scenario controller was tested under several disturbance rejection scenarios of varying complexity 

and their performance was assessed against that of single-scenario NMPCs. The benefits of the robust NMPC approach 

were most evident for longer simulations and, considering the continuous nature of a power plant and its emissions, 

make the robust NMPC approach suitable for the operation of this process in the presence of uncertainty and 

disturbances.  
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1. Introduction 

As global economic growth continues, an ever-increasing industrial demand bolsters worldwide greenhouse gas 

(GHG) emissions. CO2 is the most abundant of the GHGs, totaling 73% of all emissions in 2017, mainly because of 

its production in the power generation and transportation sectors [1]. In particular, combustion sources make up 89% 

of the total CO2 emissions subdivided by fuel type into coal (40%), oil (21%), and natural gas (18%) [1]. After a brief 

plateau in 2015 and 2016, CO2 emissions continued their upward trend in 2017 owing to the increasing reliance of 

developing countries on coal as a convenient energy source [2]. Despite recent trends of waning coal use in in the 

developed world, worldwide reliance on other CO2 emitters has been steadily increasing [3]; likely because of their 

abundance and low price. While it would be ideal to eliminate these emissions, this is not a realistic option because of 

the worldwide dependency on CO2 emitting products, thereby necessitating the development of technologies to 

mitigate global CO2 emissions.  

Carbon capture and storage (CCS) has garnered attention over the last few decades as it aims to reduce the amount of 

CO2 released from industrial sources. In particular, pre-combustion removal [4,5], post-combustion removal [6], 

chemical looping combustion (CLC) [7,8], and oxy-combustion [9,10] have received much attention.  

Post-combustion CSS (PCC) is the most mature CCS technology that is ready for deployment. A major benefit of the 

technology is that it can be used to retrofit existing CO2 emission sources for immediate removal. For PCC, several 

methods of removing CO2 from combustion products in industrial flue gases have been investigated, these include 

adsorption, physical absorption, chemical absorption, cryogenic separation, and membrane-based separation [11]. Of 

these, chemical absorption by way of amine solvents has seen experimental contributions by way of pilot-scale [12,13] 

and industrial-scale [14,15] plants. Moreover, there have also been computational contributions in modelling, 

simulation and process design [16-22]. 

Of the solvents possible for chemical absorption PCC, monoethanolamine (MEA) based solvents have received 

particular attention among the solvent alternatives because of their abundance, performance, and low price relative to 

other solvents [23]. Consequently, MEA-based chemical absorption for CO2 removal is very developed as a potential 

emerging technology since its chemistry and process have been extensively studied [24-28]. Importantly, these studies 

have allowed the development of transient mechanistic process models [29-31].  

For real-life deployment of the MEA-based PCC, the process operation must be well understood to achieve safety and 

productivity. A crucial part of the operation is the implementation of a process control system to ensure set-point 

regulation and tracking. In an MEA-based PCC plant, the control system is conventionally used to ensure that CO2 

removal targets and energy consumption requirements are met in the presence of upstream disturbances, e.g. changes 

in the energy load. The successful fulfillment of these operational goals is especially pertinent in the PCC system as 

the CO2 removal generally detracts from the profitability of the upstream plant. In addition to the control studies that 

consider conventional decentralized feedback controllers such as PI and PID [32,33], the development of the 

aforementioned PCC plant models has enabled the use of model-based control strategies. Previous studies have 

implemented model-based control featuring various levels of model sophistication and control envelopes. For the 

MEA-based PCC plant, Bedelbayev, Greer and Lie [34] implemented an MPC based on a linearized model of the 

absorber unit whereas Sahraei and Ricardez-Sandoval [35] developed an MPC involving multiple inputs and outputs 
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and compared their performance to a decentralized feedback PI-based control strategy. He, Sahraei and Ricardez-

Sandoval [36] implemented another linearized MPC model integrated with scheduling for the full MEA-based PCC 

plant. Moreover, Panahi and Skogestad [37] evaluated different control structures for the PCC plant and implemented 

a multivariable linear MPC. For increasingly complex models, Åkesson et al. [38] considered a low-order nonlinear 

model and implemented a nonlinear MPC (NMPC) for the absorber unit in the PCC plant. Decardi-Nelson, Liu and 

Liu [39] also implemented an NMPC scheme for the complete post-combustion MEA-based CCS pilot-scale plant. 

Additionally, they also developed an economic MPC (EMPC) for the plant. Similarly, Chan and Chen [40] also 

implemented an EMPC scheme based on an Aspen Plus model of an entire MEA-based CSS plant whereby the process 

economics can be optimized and controlled with respect to changing feed qualities and utility prices. These are only 

selected few of the control studies for the MEA-based PCC plant, a review on this subject can be found elsewhere 

[41]. 

A complicating factor embedded in the models that are used in model-based control approaches, including those using 

highly detailed nonlinear mechanistic models, is that the models will be subject to various types of uncertainty. These 

are caused by assumptions made in developing the model (structural), and error associated with estimating 

experimental parameters (parametric) [42]. This uncertainty, which leads to mismatch between the plant and the 

model, can be either exogenous or endogenous. Exogenous uncertainty occurs due to factors not embedded in the 

model, e.g. variations in inlet compositions, flowrates, changes in products demands; while endogenous uncertainties 

occur within the model’s parameters or equations leading to plant-model mismatch, e.g. activity coefficients, heat 

transfer coefficients, rate constants. For model-based control, taking these uncertainties into account is crucial as 

neglecting them will lead to poor controller performance; which would translate into off-specification products, failure 

to meet commercial and regulatory process demands, and lost profits. To take these uncertainties into account, the 

closed-loop operation must be made insensitive to uncertainty, which can be achieved through stochastic or robust 

methods control, the latter of which will the focus of this study. A review of stochastic MPC methods can be found 

elsewhere [43].  In this context, control actions must be determined such that the process will exhibit good performance 

in closed-loop despite these uncertainties. The robust operation of the MEA-based PCC has been addressed using 

optimal control by a few authors. For instance, Panahi and Skogestad [37] employed a robust linear MPC on the entire 

plant; while Zhang, Turton and Bhattacharyya [44] implemented a 𝐻! robust controller with a nonlinear NAARX 

model on the entire plant. Decardi-Nelson, Liu and Liu [39] evaluated the performance of their NMPC and EMPC 

schemes under upstream uncertainties; however, they did not make their controllers robust to those uncertainties. 

One optimization approach that has not been considered to make the MEA-based PCC plant robust through its control 

is the multi-scenario approach. In general, scenario-based approaches are commonly used when considering robust 

operation using MPC under uncertainty whereby an optimal controller considers multiple discrete realizations of 

uncertainty and aims to find optimal control actions that can accommodate all the pre-specified uncertainty 

realizations. The multi-scenario approach, as implemented in the present work, has previously been used for a large-

scale nonlinear model of an air separation unit [45], and linear hydrodynamic model for water resource management 

[46].  To the authors’ knowledge, the past robust controllers applied to the MEA PCC plant have used linear and 

reduced-order models while this study uses a nonlinear dynamic mechanistic model for this process. Such a model 
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enables the controller to explicitly address uncertainty where it is most likely to occur; in parameters associated to 

specific chemical phenomena and in the process operating conditions dictated by upstream units.  
The aim of this study is to use a mechanistic dynamic model to implement and assess the performance of a robust 

NMPC on the absorber in an MEA-based PCC pilot-scale plant. To the authors’ knowledge, this is the first study that 

has implemented robust control in the MEA-based PCC process (or any other CCS process) with the multi-scenario 

approach while using the actual mechanistic model of the process. This work explicitly accounts for exogenous 

uncertainty that will affect the absorber daily owing to changes in operating policies of the upstream emission-

producing plant (e.g. rapid changes in flue gas flowrates and uncertainty in flue gas composition); as well as 

endogenous parametric uncertainty in the plant model via its thermodynamic properties.  

This paper is organized as follows: Section 2 outlines the mechanistic MEA-based PCC absorber model in detail. 

Section 3 revises the formulation for NMPC and extends that formulation for a multi-scenario NMPC. Section 4 gives 

detail regarding the model implementation and validation whereas Section 5 presents the results of various robust 

control tests on a simulated MEA-based absorber. Finally, concluding remarks and future work are discussed in 

Section 6. 

2. MEA Absorber model  

The dynamic mechanistic model used in this work was adapted from Harun et al. [29] and describes an MEA-based 

CO2 absorber unit in a PCC pilot plant as a packed column. The arrangement and operating conditions are based on 

the pilot plant studied by Dugas [12]. The model is a partial differential algebraic system of equations (PDAEs) as it 

is composed of ordinary (ODEs) and partial differential equations (PDEs) as well as algebraic equations (AEs).  

The absorber, shown in Figure 1, operates at atmospheric inlet pressure and has four components: monoethanolamine 

(MEA), carbon dioxide (CO2), water (H2O), and nitrogen gas (N2), which are denoted as the set 𝑖 =

{𝑀𝐸𝐴, 𝐶𝑂", 𝐻"𝑂,𝑁"}. The column has two inlet and two outlet streams located at the bottom and the top of the 

column’s axial domain (𝑧(𝑚)), which are at 𝑧 = 0 and 𝑧 = 𝐻, respectively. The top inlet stream, referred to as the 

“lean” amine stream, consists of a liquid phase mixture of MEA, CO2, and H2O. In the full PCC plant, this stream 

comes from a storage tank that mixes fresh MEA with the recycled MEA from a downstream stripper that regenerates 

and recycles the solvent. The bottom inlet of the column, referred to as the flue gas stream, consists of CO2, H2O, and 

N2. This gaseous mixture comes from an upstream combustion source and contains the CO2 for removal. The top 

outlet stream, referred to as the vent gas, consists of unremoved CO2 as well as H2O and N2. The bottom outlet stream, 

referred to as the “rich” amine stream consists of all four components and goes to the aforementioned stripper for 

isolation of the CO2 and regeneration of the amine solvent. Inside the column, a small amount of gaseous CO2 is 

naturally absorbed into the liquid phase from the gas phase. More importantly, the absorption relies on the reactive 

mechanism that takes advantage of the weak acid and base properties of the CO2 and MEA (or other alkanolamines), 

respectively. These two components react to make a water-soluble salt containing the CO2, which readily dissolves 

into the liquid phase rich amine solution. A detailed description of this mechanism can be found in [47]. 
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The absorber model considered in this study operates under the following assumptions: 

1. There is turbulent flow within the column, which is approximated as plug flow. 

2. The system is modelled as axially distributed and is assumed to be well-mixed in the radial direction. 

3. The gas phase is ideal owing to low operating pressures. 

4. The pressure drop along the height of the column is linear. 

5. N2 only exists in the gas phase, phase changes occur in all other components in both directions. 

6. There is thermal equilibrium between the phases. 

7. There is no accumulation in gas and liquid films. 

8. The liquid phase has a constant velocity in the axial domain for a given inlet flowrate. 

This model consists of molar component balances for the gas and liquid phases, energy balances for the gas and liquid 

phases, rate equations, chemical kinetic equations, equilibrium equations, and physical property descriptions. These 

are presented next. 

2.1. Molar component material balance 

The molar component material balances describe the dynamics of the constituent component concentration in each 

phase owing to chemical reactions, changes in equilibria, and mass transfer. They are as follows: 

𝑑𝐶#$

𝑑𝑡 = 𝑢$
𝜕𝐶#$

𝜕𝑧 + 𝑎%𝑁# 
(1)  

𝑑𝐶#
&

𝑑𝑡 = −𝑢&
𝜕𝐶#

&

𝜕𝑧 − 𝑎%𝑁# − 𝐶#
& 𝜕𝑢&
𝜕𝑧  (2)  

where 𝐶#$(𝑚𝑜𝑙/𝑚') and 𝐶#
&(𝑚𝑜𝑙/𝑚') are liquid and gas molar concentrations of component 𝑖, respectively; and 

𝑢$(𝑚/𝑠) and 𝑢&(𝑚/𝑠) are liquid and gas velocities, respectively. 𝑎%(𝑚"/𝑚') is the wetted area, while 

𝑁#(𝑚𝑜𝑙/𝑚"/𝑠) is the molar flux between phases for component	𝑖. The molar flux directions are defined as positive 

for gains of material in the liquid phase and, accordingly, negative for gains of material in the gas phase. 

Flue gas: 
𝐶!,!#
$ , 𝑇!#

$ , 𝑢!#
$  

Vent gas 

CO2-rich amine solution 

Lean amine solution: 
𝐶!,!#% , 𝑇!#% , 𝑢!#

$  

Figure 1: Absorber column arrangement with inputs and outputs. Components are MEA, 
CO2, H2O, and N2 

z=0 
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While the assumptions stated that there is a fixed liquid velocity along the height of the column for a given liquid inlet 

flowrate, the same is not assumed for the gas velocity since the gas phase is much less dense and loses substantially 

more momentum as it travels up the column. This decrease in velocity is expressed as a momentum balance for the 

gas phase: 

𝜕𝑢&
𝜕𝑧 =

𝑢&
𝑃
𝑑𝑃
𝑑𝑧 +

𝑢&
𝑇&
𝑑𝑇&
𝑑𝑧 −

𝑎%
𝐶()(
& @𝑁#

*

#+,

 (3)  

where 𝑃(𝑏𝑎𝑟) is the absorber pressure as a function of position in the axial domain, 𝑇&(𝐾) is the gas phase temperature, 

and 𝐶()(
& = ∑ 𝐶#

&*
#+, (𝑚𝑜𝑙/𝑚') is the total gas concentration.  

2.2. Energy balance 

The energy balances describe the dynamics of the temperatures of the two phases owing to chemical reactions, 

equilibria, and heat transfer. They are stated as follows: 

𝑑𝑇$
𝑑𝑡 = 𝑢$

𝜕𝑇$
𝜕𝑧 −

𝑎%
∑ 𝑐-,#$*
#+, 𝐶#$

Fℎ&$H𝑇$ − 𝑇&I + ∆𝐻/01𝑁23! − ∆𝐻4!3
56-𝑁4!3 + ℎ)7((𝑇$ − 𝑇689)K (4)  

𝑑𝑇&
𝑑𝑡 = −𝑢&

𝜕𝑇&
𝜕𝑧 +

𝑎%
∑ 𝑐-,#

&*
#+, 𝐶#

& Fℎ&$H𝑇$ − 𝑇&IK (5)  

where 𝑇$(𝐾) is the liquid phase temperature,	ℎ&$(𝐽/𝑚𝑜𝑙/𝐾) is the interfacial heat transfer coefficient given by the 

Chilton-Colburn heat and mass transfer analogy [48] , and 𝑇689(𝐾) is the temperature of the surroundings. 

𝑐-,#$ (𝐽/𝑚𝑜𝑙/𝐾) and 𝑐-,#
& (𝐽/𝑚𝑜𝑙/𝐾) are the liquid and gas specific heat capacities of component	𝑖, respectively; 𝑁23! 

and 𝑁4!3 are the molar fluxes of CO2 and H2O, respectively, calculated using the two-film mass transfer model. 

∆𝐻/01(𝐽/𝑚𝑜𝑙) is the molar heat of reaction, ∆𝐻4!3
56-(𝐽/𝑚𝑜𝑙) is the molar heat of vaporization of water, and ℎ)7( 

(W/m2/K) is the heat transfer coefficient between the absorber and its surroundings. 

2.3. Mass Transfer 

The two-film model gives the rate of mass transfer within the absorber for all components excluding N2, as it is 

assumed to only occur in the gas phase. The model is stated as follows: 

𝑁# = 𝐾#
&(𝑝# − 𝑝#∗) (6)  

1
𝐾#
& =

1
𝑘#
& +

𝐻𝑒#
𝑘#$𝐸69;

 (7)  

where 𝐾#
&(𝑚𝑜𝑙/𝑚"/𝑃𝑎/𝑠) is the overall mass transfer coefficient for the gas phase while  𝑘#

&(𝑚𝑜𝑙/𝑚"/𝑃𝑎/𝑠) and 

𝑘#$(𝑚/𝑠) are the binary gas and liquid mass transfer coefficients for component 𝑖, respectively. 𝑝#(𝑘𝑃𝑎) and 𝑝#∗(𝑘𝑃𝑎) 

are the partial and equilibrium pressures for component 𝑖, respectively. 𝐻𝑒#(𝑘𝑃𝑎	𝑚'/𝑚𝑜𝑙) is the Henry’s law constant 

for component 𝑖. The use of an overall mass transfer coefficient eliminates the need to calculate interfacial 

concentrations and, as stated earlier, transfer from the gas to the liquid phase was used as the convention for positive 

mass transfer. The model assumes that resistance to mass transfer for liquid H2O and MEA is negligible because these 

components have a higher solubility; thus, most of their resistance to mass transfer occurs in the gas phase [29]. 
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As mentioned above, the acid-base chemical reactions between CO2 and MEA described by Austgen et al. [49] dictates 

the amount of CO2 absorbed in the liquid phase solvent. The effect of this increase is captured by the enhancement 

factor (𝐸69;), which represents an approximate analytical solution to the differential equations governing the 

diffusional mass transfer and chemical reactions occurring in the liquid film. The enhancement factor is valid under 

the pseudo-first order reaction scheme with respect to CO2; which is valid in the situation where an alkanolamine is 

absorbing CO2 in a packed column, owing to the increased mixing afforded by the packing [27]. This scheme is 

facilitated by low CO2 partial pressure, high reactant concentration, and short contact times; thus, ensuring that mass 

transfer is enhanced by the reactions while not depleting the amine concentration. The volume of amine is considered 

constant throughout the film and equal to that of the bulk phase. The enhancement factor is given by: 

𝐸69; =
Q𝑘"𝐶<=>∗ 𝐷23!

𝑘23!
$  (8)  

where 𝑘"(𝑚"/𝑚𝑜𝑙/𝑠) is the second-order reaction rate constant and 𝐶<=>∗ (𝑚𝑜𝑙/𝑚')	is the liquid molar concentration 

of free MEA, both calculated from Hoff et al. [26]. 𝐷23!(𝑚
"/𝑠) is the diffusivity of CO2 in the MEA solution. 

2.4. Equilibria 

The dynamic model considers chemical and phase equilibria together. Chemical equilibrium describes the balance 

between ionic and molecular species in the liquid phase while phase equilibrium describes the balance between phases 

at the gas-liquid interface. For H2O and MEA, the equilibrium pressure at the interface is expressed as follows: 

𝑝#∗ = 𝑥#𝛾#𝑝#
56- (9)  

where 𝑥#,	𝛾#, and  𝑝#
56-(𝑘𝑃𝑎) are the liquid fraction, activity coefficient, and vapor pressure of component 𝑖, 

respectively. Since the temperature of the system exceeds the supercritical temperature of CO2, it does not exist in the 

liquid phase. Instead, the equilibrium pressure of CO2 is calculated using Henry’s law: 

𝑝23!
∗ = 𝐻𝑒23!𝐶23!

∗ 𝛾23! (10)  

where 𝐶23!
∗ (𝑚𝑜𝑙/𝑚')	 is the liquid molar concentration of free CO2 from Hoff et al. [26], and 𝛾23! is the activity 

coefficient of CO2. 

2.5. Physical Properties, Absorber Design, and Model Inputs  

Table 1 lists the physical properties used in the model, their sources, and values (if constant). Variable physical 

properties are calculated using correlations provided in the corresponding reference. Table 1 also lists the packed 

column design characteristics as used in this study. Additionally, Table 2 lists the required inputs for the model, which 

come in the form of initial conditions and inlet (boundary) operating conditions. Initial conditions are obtained from 

measurements/estimates from the absorber while operating conditions are obtained from measurements/estimated 

from upstream units. 

Table 1: Physical properties and design characteristics used for the absorber column model 

Physical Property Value Source 
Ambient Temperature (K) 𝑇689 = 297.6 Harun et al. [29] 
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Heat transfer coefficient between absorber 
and surroundings (W/m2/K) 

ℎ)7( = 430 Kvamsdal and Rochelle [50] 

Molar heat of reaction (kJ/mol) ∆𝐻/01 = 48 Kvamsdal and Rochelle [50] 
Molar heat of vaporization (kJ/mol) ∆𝐻4!3

56- = 82 Poling, Prausnitz and O'Connell [51] 

MEA activity coefficient 𝛾<=> = 0.677 Aspen Property Package 
CO2 activity coefficient 𝛾23! = 0.381 Smith, Van Ness and Abbott [52] 

H2O activity coefficient 𝛾4!3 = 0.974 Smith, Van Ness and Abbott [52] 

Wetted area (𝑚"/𝑚') 𝑎% Onda, Takeuchi and Okumoto [28] 

Liquid component heat capacity (𝐽/𝑚𝑜𝑙/𝐾) 𝑐-,#$  Hilliard [53] 
Gas component heat capacity (𝐽/𝑚𝑜𝑙/𝐾) 𝑐-,#

&  Aspen Property Package 
Liquid component mass transfer coefficient 
(𝑚/𝑠) 

𝑘#$ Onda, Takeuchi and Okumoto [28] 

Gas component mass transfer coefficient 
(𝑚𝑜𝑙/𝑚"/𝑃𝑎/𝑠) 

𝑘#
& Onda, Takeuchi and Okumoto [28] 

Component Henry’s law constant  
(𝑘𝑃𝑎	𝑚'/𝑚𝑜𝑙) 

𝐻𝑒# Haimour and Sandall [24] 

Second-order reaction rate constant  
(𝑚"/𝑚𝑜𝑙/𝑠) 

𝑘" Hikita et al. [25] 

CO2 diffusivity in solvent solution (𝑚𝑜𝑙/𝑚') 𝐷23! Ko et al. [54] 
Component vapour pressure (bar) 𝑝#

56- Aspen Property Package 
Design Characteristics   
Column internal diameter (𝑚) 0.43 Cerrillo-Briones and Ricardez-Sandoval [55] 
Packing height (𝑚) 6.1 Cerrillo-Briones and Ricardez-Sandoval [55] 
Packing type IMTP #40 Cerrillo-Briones and Ricardez-Sandoval [55] 

 
Table 2: Model inputs: initial and operating conditions required  

 Initial Condition (𝟎 ≤ 𝒛 ≤ 𝑯, 𝒕 = 𝟎) Boundary Condition (	𝒛 = 𝟎, 𝒛 = 𝑯, 𝒕 ≥ 𝟎) 

Gas 𝐶#
&(𝑧, 0) = 𝐶#,)

& (𝑧) 𝐶#
&(0, 𝑡) = 𝐶#,#1

& (𝑡) 

 𝑇&(𝑧, 0) = 𝑇)
&(𝑧) 𝑇&(0, 𝑡) = 𝑇#1

&(𝑡) 
  𝑢&(0, 𝑡) = 𝑢#1

& (𝑡) 
  𝑃&(0, 𝑡) = 𝑃#1

&(𝑡) 
Liquid 𝐶#$(𝑧, 0) = 𝐶#,)$ (𝑧) 𝐶#$(𝐻, 𝑡) = 𝐶#,#1$ (𝑡) 

 𝑇$(𝑧, 0) = 𝑇)$(𝑧) 𝑇$(𝐻, 𝑡) = 𝑇#1$ (𝑡) 
  𝑢$(𝑧, 𝑡) = 𝑢#1$ (𝑡) 

 
The outlined PDEs that comprise the mass and energy balances (Equations 1-5) are denoted as 𝒇, while the AEs that 

comprise the process phenomena (Equations 6-10) and physical property (Table 1) models are denoted as  𝒉. This set 

of equations represent the mechanistic model for this process, which require the column design specifications and 

initial/boundary conditions presented in Tables 1 and 2, respectively.  

3. Robust NMPC  
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In the present work, a nominal NMPC formulation will be implemented along with the multi-scenario formulation for 

comparison. By nominal NMPC, we refer to an NMPC controller that includes no measures for dealing with 

uncertainty in the formulation (it assumes that its parameters are known a priori). We begin by defining the multi-

scenario NMPC and subsequently presenting the nominal NMPC as a special case. Generally, an NMPC uses a 

nonlinear dynamic process model to determine optimal control actions that minimize a loss function, e.g. set-point 

tracking errors in the controlled variables. In the case of the multi-scenario NMPC, the controller considers multiple 

realizations of the model’s uncertain parameters, which results in instances of the process model denoted by the set 

“𝑟”. The operation of the NMPC in the feedback control strategy is depicted in Figure 2, which shows a control 

structure operating at a time 𝑡 in the operation of a process where an NMPC  receives measurements or estimates of 

the plant states 𝒙𝟎	as initial conditions for the model, as well as the set points for the controlled variables 	𝒚𝒕A𝒊
𝒔𝒑   . This 

information is included in the formulation of the optimal control problem. For a multi-scenario discrete-time NMPC 

at sampling time 𝑡	, this problem is as follows: 

min
𝒖𝒕#𝒋∀G∈{,,…,(A2}

@𝜔/ q𝑸@H𝒚s𝒕A𝒊,𝒓 − 𝒚𝒕A𝒊,𝒓
𝒔𝒑 I"

M

#+(

t
<

/+,

+𝑹@∆𝒖𝒕A𝒋"
2

G+(

 

𝑠. 𝑡. 
𝒇H𝒙𝒕,𝒓, 𝒖𝒕A𝒋; 𝜽𝒓I = 𝒙s𝒕A𝒊,𝒓,					∀𝑖 ∈ {1,… , 𝑡 + 𝑃},					∀𝑗 ∈ {1,… , 𝑡 + 𝐶},					∀𝑟 ∈ {1,… ,𝑀} 
𝒙𝒕 = 𝒙𝟎 
𝒉H𝒙s𝒕A𝒊,𝒓, 𝒖𝒕A𝒋; 𝜽𝒓I = 𝒀~𝒕A𝒊,𝒓,					∀𝑖 ∈ {1,… , 𝑡 + 𝑃},					∀𝑗 ∈ {1,… , 𝑡 + 𝐶},				∀𝑟 ∈ {1,… ,𝑀} 
𝒈H𝒙s𝒕A𝒊,𝒓, 𝒖𝒕A𝒋; 𝜽𝒓I ≤ 𝟎,			 
𝒖𝒍 ≤ 𝒖𝒕A𝒋 ≤ 𝒖𝒉,					∀𝑗 ∈ {1,… , 𝑡 + 𝐶} 

(11)  

where 𝒙s𝒕A𝒊,𝒓 ∈ ℝQ% represents the predicted states (differential variables) for each model realization, 𝒚s𝒕A𝒊,𝒓 ∈ ℝQ& are 

the predicted controlled variables for each model realization, 𝜽𝒓 ∈ ℝQ𝜽 are the set of realizations for the uncertain 

model parameters, and 𝒀~𝒕A𝒊,𝒓 ∈ ℝQ( is the vector of predicted outputs (algebraic variables) for each realizations such 

that 𝒀~𝒕A𝒊,𝒓 ⊃ 𝒚s𝒕A𝒊,𝒓. Note that these variables are defined as across the set “𝑟”, representing the various model 

realizations corresponding to each realization in the uncertain parameters. 𝒚𝒕A𝒊
𝒔𝒑 ∈ ℝQ& are the user-defined set points 

for the controlled variables, and 𝒙𝒕 ∈ ℝQ% are the measured or estimated states used as the initial condition. Note that 

these variables are not indexed across the set “𝑟” as they are externally acquired thus realization independent (they 

have the same value for all realizations). 𝒙𝟎 ∈ ℝQ% is the state vector acquired from the simulated plant, which is set 

as equal to 𝒙𝒕 for every NMPC execution thereby enabling feedback to the controller.  ∆𝒖𝒕A𝒊 ∈ ℝQ) is the vector of 

changes in the manipulated variables (∆𝒖𝒕A𝒊 = 𝒖𝒕A𝒊 − 𝒖𝒕A𝒊R𝟏). The controller tuning parameters include diagonal 

Robust NMPC 
𝒇(𝒙𝒕, 𝒖𝒕A𝒋; 𝜽𝒓) = 𝒙s𝒕A𝒊,𝒓 
𝒉(𝒙𝒕, 𝒖𝒕A𝒋; 𝜽𝒓) = 𝒀~𝒕A𝒊,𝒓 

𝒖𝒍 ≤ 𝒖𝒕A𝒊 ≤ 𝒖𝒉 

Plant 
𝒇(𝒖𝒕A𝟏, 𝜽) = 𝒙𝒕A𝟏 
𝒉(𝒖𝒕A𝟏 , 𝜽) = 𝒀𝒕A𝒊 

𝑢(A, 𝒙𝒕A𝟏 𝑦(A#
;-  

𝒙𝒕 = 𝒙T(𝑡 ← 𝑡 + 1) 
 

Figure 2: Feedback loop between the simulated plant and multi-scenario NMPC 
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positive semidefinite matrices 𝑸 ∈ ℝQ&×Q& and 𝑹 ∈ ℝQ)×Q), which affect set-point tracking and control move 

suppression, respectively. 𝑃 and 𝐶, which denote the prediction and control horizons as integer multiples of the 

sampling intervals, respectively, also serve as tuning parameters as they can affect the controller’s performance. 

∑ 𝜔/<
/+, = 1 are nonnegative weights for different uncertainty realizations where 𝑀 is the user-defined number of 

realizations that the NMPC considers. These weights are useful for providing less conservative control actions in the 

robust NMPC approach if a probability distribution for the realizations is available. As mentioned above, these 

realizations represent instances of the process model that the NMPC simultaneously considers such that each 

realization has a unique combination of uncertain parameters. Of the total model parameters, only a user-defined 

subset is considered uncertain, this subset is chosen based on a priori process and model knowledge about which 

parameters are difficult to estimate.  

By solving the open-loop problem (11), an optimal control sequence	𝒖𝒕A𝟏, … , 𝒖𝒕A𝑪 is obtained for the user-defined 

control horizon 𝐶. The optimization problem from which this optimal sequence is acquired is subject to the system of 

constraints composed of the aforementioned DAE system 𝒇, 𝒉, and 𝒈, as well as input constraints 𝒖𝒍 ≤ 𝒖𝒕A𝒊 ≤ 𝒖𝒉. 

𝒇:ℝQ% ×ℝQ) ×ℝQ𝜽 → ℝQ% denotes the set of nonlinear differential equations describing the evolution of states in 

the system,  𝒉:ℝQ% ×ℝQ) ×ℝQ𝜽 → ℝQ( denotes the set of algebraic equations describing the relationships between 

the states and the outputs of the process models, and 𝒈:ℝQ% ×ℝQ) ×ℝQ𝜽 → ℝQ( denotes the set of inequality 

constraints imposed on the controller (aside from the manipulated variable contraints).  𝒖𝒍 and 𝒖𝒉 ∈ ℝQ) denote the 

lower and upper bounds for the manipulated variables and reflect the physical limitations of the process and its 

controllers. For the multi-scenario NMPC the DAE system composed of	𝒇, 𝒉, and 𝒈 contains “𝑟” realizations of the 

uncertain parameters 𝜽𝒓. This DAE system is used to predict the process’ evolution for a user specified prediction 

horizon 𝑃 for the given uncertainty realizations. This enables the objective function to determine the optimal control 

actions for the given control horizon. As shown in problem (11), the objective (loss) function contains two weighted 

terms: one minimizes quadratic deviation from specified set-points and the other penalizes changes in the control 

actions. From the optimal control sequence obtained by solving problem (11), the first control action 𝒖𝒕A𝟏 is passed 

to the plant as depicted in Figure 2. The plant is then simulated for a fixed interval ∆𝑡 using the input 𝒖𝒕A𝟏 and a 

nonlinear process model. This simulation enables the plant states to evolve to 𝒙𝒕A𝟏 and, after the time interval ∆𝑡	 has 

elapsed, the process of obtaining and giving measurements/estimates to the NMPC is repeated. By using the evolved 

states 𝒙𝒕A𝟏	 as feedback to solve problem (11) again recursively during each time interval ∆𝑡	, the scheme becomes 

closed-loop. This is shown in the feedback portion of Figure 2 where the initial condition is updated as 	𝒙𝒕 = 𝒙T  after 

moving the horizon from 𝑡 to 𝑡 + 1. In this study, we assume full state and disturbance information availability (i.e. 

the relevant information needed by the NMPC can be precisely measured or estimated). State estimation for the MEA 

PCC system remains an open challenge that will be addressed in future work. Note that past NMPC studies on this 

system [38-40] have made similar assumptions. Also note that feedback does not necessarily need to occur at every 

sampling interval; however, more frequent feedback often leads to better control performance. 

The mechanism by which the multi-scenario NMPC makes the controller robust is by finding a single optimal control 

sequence 𝒖𝒕A𝟏, … , 𝒖𝒕A𝑪 that minimizes the objective function for all model realizations given the feedback	𝒙𝒕 = 𝒙𝟎 

from the plant. This unique optimal control sequence accommodates for the user-defined set of possible values that 
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uncertainties parameters may manifest during operation. This makes the control actions robust to uncertainty in the 

sense that although the “true” parameter values are not ascertained by the NMPC controller, the actions will be well-

suited for performance across the defined set of uncertain parameter realizations.  

As mentioned above, the nominal NMPC occurs as a special case of the multi-scenario NMPC when only a single 

scenario is considered with no further safeguards against uncertainty. The single scenario corresponds to a nominal 

realization of the model uncertain parameters, i.e. 𝜽𝒓	∀𝑟 ∈ {1}. This assumption simplifies the formulation and shrinks 

the model size as variables are no longer indexed across “𝑟”, however; it ignores model uncertainty by making the 

assumption that the model provides a perfect representation of the system. Unfortunately, this often not the case in 

practice and may result in non-optimal operation because of poor controller performance. Worse still, this assumption 

may lead to infeasibility.  

Both the nominal and multi-scenario NMPC controllers are implemented in a control loop with plant simulation 

containing a single realization of the uncertain parameters	𝜽.  The nominal and multi-scenario NMPC use the large-

scale mechanistic model of the absorber column, consisting of 𝒇 and 𝒉, presented in Section 2.  

4. Model Implementation and validation 

The nominal and multi-scenario NMPC optimization formulations are NLP and were implemented in the Pyomo 

environment, an optimization library in PYTHON [56]. The axially distributed, continuous-time differential-algebraic 

system presented in Section 2 was discretized axially into ten finite elements using the backward finite difference 

method. This discretization was determined in the model validation stage by considering different numbers of finite 

elements for the axial domain. Since there is a tradeoff when considering discretization resolutions between model 

size and accuracy, a course axial discretization was used to prevent the model from becoming untenably large when 

discretized in time. The axially discretized absorber model has 80 states and 1,781 algebraic variables. Likewise, the 

model was discretized in time into eight elements to a step size of 12.5 seconds using three-point Radau collocation 

on finite elements for all experiments. The Radau collocation method was chosen because of its high accuracy and 

built-in functionality in Pyomo. The high-resolution discretization in time is necessary because fast responses are 

observed owing to the fact that the model represents a pilot-scale plant and disturbances are considered directly at the 

system boundaries, it was found that step sizes larger than 12.5 seconds presented difficulties to the solvers when 

solving the NMPC problem and smaller sizes would have increased the problem size, making it unnecessarily large. 

The interior-point optimization algorithm (IPOPT) [57] was used to search for local solutions of the nominal and 

robust optimization problems presented in (11). The studies presented in this Section were performed on an Intel core 

i7-4770 CPU @ 3.4GHz. The nominal inlet conditions for the pilot-scale absorber model are adopted from Cerrillo-

Briones and Ricardez-Sandoval [55] and are presented in Table 3. 
Table 3: Base case inlet operating conditions 

 Flue Gas Inlet (𝒛 = 𝟎) Lean Solution Inlet (𝒛 = 𝒉) 
𝑻𝒊𝒏(𝑲) 319.17 314 

𝒚𝒊𝒏𝑴𝑬𝑨/𝒙𝒊𝒏𝑴𝑬𝑨(𝒎𝒐𝒍/𝒎𝒐𝒍) 0 0.1 
𝒚𝒊𝒏
𝑪𝟎𝟐/𝒙𝒊𝒏

𝑴𝑪𝟎𝟐(𝒎𝒐𝒍/𝒎𝒐𝒍) 0.175 0.030 
𝒚𝒊𝒏
𝑯𝟐𝑶/𝒙𝒊𝒏

𝑯𝟐𝑶(𝒎𝒐𝒍/𝒎𝒐𝒍) 0.025 0.870 

𝒚𝒊𝒏
𝑵𝟐/𝒙𝒊𝒏

𝑵𝟐(𝒎𝒐𝒍/𝒎𝒐𝒍) 0.8 0 



11 
 

𝒖𝒊𝒏(𝒎/𝒔) 0.64 0.00473 
 
In order to start the controller tests at realistic points, the inlet conditions stated above were used to solve a steady-

state version of the nominal absorber model. This steady state provided initial conditions for all undisturbed states at 

which to begin the dynamic plant simulations. Moreover, the NMPC model’s performance in the solver is sensitive to 

how the algebraic variables are initialized in the solver. This is because the optimization problem is large, containing 

64,488 nonlinear algebraic equations and 64,497 variables for the nominal (single-scenario) NMPC. Accordingly, 

prior to starting test scenarios, a feasibility problem is executed and the algebraic variables from this feasibility 

problem are used to initialize subsequent NMPC solves.  

The model was validated at steady state using the base case operating conditions reported by Harun et al. [29]. These 

validation operating conditions differ from the base case operating conditions used in this study (shown in Table 3) as 

they have altered reference fluid velocities. The lower fluid velocities used in this study result in lower carbon capture 

rates than those considered in the Harun et al. [29]; however, the results obtained are nevertheless representative of 

the MEA PCC plant. The model was validated at steady state in order to compare the outputs to past implementation 

of the model, the validation outputs are displayed in Table 4. The outlet stream values were compared to Cerrillo-

Briones and Ricardez-Sandoval [55] and Harun et al. [29]. The latter of these studies was itself validated using 

experimental data from an MEA absorption CCS pilot-scale plant from Dugas [12] and found to be in good agreement.  
Table 4: Steady-state validation data for the current absorber model using the base case operating conditions from Harun et al. 
[29]. Model 1: Cerrillo-Briones and Ricardez-Sandoval [55], Model 2: Harun et al. [29]. 

 Vent gas Rich amine solution 
 Current 

model 
Model 1 Model 2 Current 

model 
Model 1 Model 2 

Temperature (K) 314.45 314.78 314.15 330.61 328.04 327.76 
Total molar flowrate 
(mol/s) 

3.49 3.53 3.47 32.87 31.68 32.87 

       
Mole Fraction       
MEA 0.0001 0 0 0.0981 0.1044 0.1021 
CO2 0.0088 0.0108 0.0085 0.0555 0.0502 0.0503 
H2O 0.0717 0.0761 0.0651 0.8464 0.8452 0.8475 
N2 0.9193 0.9066 0.9264 0 0 0 

 
As shown in Table 4, the current model implementation with the base case operating conditions from Harun et al. [29] 

is in very good agreement for all output values with both models against which it was tested. The output values 

predicted by the present model have a 4.012% difference and 2.43% difference from model 1 [55] and model 2 [29], 

respectively; and there are no egregiously inaccurate values. This also validates the choice of resolution for the axial 

discretization mentioned above. Based on these results, the model was deemed fit for use in the study. 

5. Results 

In the PCC absorber model presented in Section 2, four parameters were considered uncertain. These included the 

species activity coefficients in the equilibrium pressure relations (γ^_`,	γab! , γc!b) and the CO2 flue gas inlet fraction 

(yde
ab!). To the authors’ knowledge, this is the first study that explicitly considers uncertainty in these parameters for 

the post-combustion CO2 absorber unit. The activity coefficients are featured in the equilibria model (Equation 9); an 
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earlier study [55] established their significant effect on the system’s mass transfer rate. The activity coefficients were 

chosen as uncertain parameters because they typically exhibit variation with changing operating conditions [49]. This 

potential variation is addressed in the proposed robust NMPC implementation by treating them as uncertain 

parameters. Meanwhile, the feed fraction is an inlet condition that is likely to be uncertain due to upstream variations 

in fuel quality (e.g. change in the type of coal) and demands as well as changes in the operating conditions of the 

fossil-fired power plants. For simplicity, changes in the CO2 flue gas inlet mole fraction are reflected only in the H2O 

gas inlet mole fraction, so they are treated as a single uncertain parameter. This is assumed because any changes in 

the upstream process will only affect the relative ratio of combustion products in the flue gas (CO2 and H2O), while 

the fraction of the two non-combustible components will be effectively fixed because there is no MEA in the flue gas 

and N2 is inert. Table 5 contains the nominal values for the uncertain parameters considered in this study.  
Table 5: Uncertain parameters and their nominal values 

Uncertain Parameter (𝛉) Nominal Value (𝛉𝐧𝐨𝐦) 
𝛾<=>	 0.677 
𝛾23! 0.381 
𝛾4!3 0.974 
𝑦#1
23! 0.175 

 
The nominal NMPC and the multi-scenario NMPC definition from (11) were applied to the CO2 absorber model 

presented in Section 2. The formulation of the former will be omitted for brevity as the requisite assumptions were 

presented above; however, we define the optimization problem for the latter and is as follows: 

min
i+,,.#/
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𝑠. 𝑡. 
𝒇�𝒙𝒕, 𝐹$,#1(AG; 𝜽𝒓� = 𝒙s𝒕A𝒊,𝒓,					∀𝑖, 𝑗 ∈ {1,… , 𝑡 + 𝑃},					∀𝑟 ∈ {1,… ,𝑀} 

𝒙𝒕 = 𝒙𝟎 
𝒉�𝒙s𝒕A𝒊,𝒓, 𝐹$,#1(AG; 𝜽𝒓� = 𝒀~𝒕A𝒊,𝒓,					∀𝑖, 𝑗 ∈ {1,… , 𝑡 + 𝑃},					∀𝑟 ∈ {1,… ,𝑀} 

𝐹$,#1$ 	≤ 𝐹$,#1(AG ≤ 𝐹$,#17 					∀𝑗 ∈ {1,… , 𝑡 + 𝐶} 

(12)  

where the manipulated variable is the total liquid feed flowrate 𝐹#1$ , with lower and upper bounds at 𝐹$,#1$ = 10	𝑚𝑜𝑙/𝑠 

and 𝐹$,#17 = 80	𝑚𝑜𝑙/𝑠 , respectively. This input range provides a physically realistic range for the feed rate while 

allowing for fast control action. Note that the liquid inlet flowrate is typically used in conjunction with the reboiler 

duty as manipulated variables when considering an entire MEA PCC plant; in this study however, only the former is 

used however since it directly affects the absorber being studied and is better suited for disturbance rejection and fast 

control. As shown in Section 2, the states defined in the differential model equations 𝒇 for which initial conditions	𝒙𝒕 =

𝒙𝟎 are required are the component phase concentrations and phase temperatures corresponding to equations (1),(2),(4), 

and (5). Similarly, the algebraic equations defined in 𝒉  contain equations (3), (6)-(10) along with physical property 

relations from Table 1. The control and prediction horizon were both set as 100 seconds, which discretized into eight 

time intervals (𝑃 = 𝐶 = 8). This was determined based on preliminary uncontrolled step disturbances tests where the 

most parsimonious discretization that provided an acceptable resolution for observing dynamics was obtained. The 
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weighting matrices were set as identity matrices of proper dimensions (𝑸 = 𝐼Q&×Q& and 𝑹 = 𝐼Q)×Q)) and, as no 

underlying distribution of the expected values of the uncertain parameters is available, the realization weighting 

parameter is assumed to be equal for all realizations (𝜔, = 𝜔" = ⋯ = 𝜔<); the latter inherently assumes that the 

uncertain parameter values are uniformly distributed. The controlled output (variable) in the objective function is set 

as percentage of CO2 captured from the flue gas, which will have a unique steady state for a given set of initial and 

operating conditions. This variable is defined as follows: 

%𝐶𝐶 =
𝐹#1
2T! − 𝐹)7(

2T!

𝐹#1
2T! × 100% (13)  

For the multi-scenario controllers tested, it is expected that there will be increasing loss in performance as the 

controller considers a larger number of scenarios. This performance deterioration manifests as less aggressive control 

actions and eventual set-point offsets. This effect can be examined by comparing the performance of a nominal NMPC 

under no plant-model mismatch (i.e. the case where the controller knows the plant parameters perfectly) to the 

performance of the multi-scenario NMPCs. Since the nominal NMPC has a perfect model of the plant, which results 

in off-set free tracking, it provides an upper limit for controller performance. Thus, for a given controller tuning, the 

performance of the nominal NMPC can be used as a benchmark to compare the performance of controllers that do 

result in offset (i.e. robust NMPC controllers and NMPC controllers that consider a plant-model mismatch). To 

quantify the performance degradation of the robust controller, the price of robustness was used, i.e. the percent 

difference in performance of the robust controller relative to the nominal NMPC controller. It is expected that the 

price of robustness (PoR) will increase to reflect increasing conservativeness of multi-scenario NMPCs as they 

consider more uncertainty realizations in their formulation. PoR is defined as follows: 

𝑃𝑜𝑅 = �
𝐽/)97;( − 𝐽Q)8#16$

𝐽Q)8#16$
� × 100% (14)  

where “𝐽/)97;(” and “𝐽1)8#16$”  are the performance indices of a given controller. These terms are defined as the sum 

of squared errors with respect to a CO2 removal percentage set-point over a time period (T), i.e. 

𝐽j =@(%𝐶𝐶# −%𝐶𝐶#kM)",				
l

#+T

∀𝑐 = {𝑛𝑜𝑚𝑖𝑛𝑎𝑙, 𝑟𝑜𝑏𝑢𝑠𝑡	} (15)  

Percent offsets from the desired set-point at the final steady state of simulation were also used for assessment of the 

robust NMPCs tested. Another factor to consider when using multi-scenario controllers is the increase in size of the 

multi-scenario NMPC optimization problem. The size of the problem increases proportionally to the number of 

realizations considered by the controller, thereby increasing the CPU time to solve each optimization problem. 

Accordingly, averaged CPU times for NMPC executions were also recorded to assess performance in a given 

simulation.  

5.1. Scenario A: Effect of size of uncertainty region 

The effect of the size of the uncertainty region was investigated first. The uncertainty region refers to the symmetric 

interval box of a priori defined values around the nominal parameter values in which the uncertain parameters are 

bounded in a multi-scenario formulation (i.e. 𝜽 ∈ [(1 − 𝛼)𝜽𝒏𝒐𝒎, (1 + 𝛼)𝜽𝒏𝒐𝒎]), where the parameter 𝛼 is used to 

represent the size of the uncertainty region. Given increasing sizes of uncertainty regions 𝛼, the robust controller 
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performance is expected to degrade since the uncertain parameters are able to take on a wider range of values, which 

the controller must accommodate for. The source of the performance degradation is of interest as it could manifest as 

less aggressive control action or set-point offset.  

As mentioned above, a nominal NMPC was designed with the uncertain parameter values set to their corresponding 

nominal parameters (Table 5), which were the same values used in the plant for this scenario. This corresponds to the 

operational case where the model describes the plant perfectly, which may rarely occur in practice. As can be seen in 

Table 6, the nominal NMPC has no set-point offset in the %CC controlled variable. As mentioned above, the 

performance of the nominal NMPC was used to determine the PoR in order to compare multiple three-realization 

multi-scenario NMPCs that were also tested in the plant simulation. The three-realization multi-scenario NMPCs 

tested had increasingly large uncertainty region sizes (i.e. increasing 𝛼 value). The scenarios in the three-realization 

controllers were defined at the nominal (𝜽𝒏𝒐𝒎), minimal (𝜽𝒍 = (1 − 𝛼)𝜽𝒏𝒐𝒎), and maximal (𝜽𝒉 = (1 + 𝛼)𝜽𝒏𝒐𝒎) 

values of each uncertain parameter for the given size of uncertainty region. These controllers were tested in a 

disturbance rejection scenario, where two subsequent 5% steps down in total flowrate of flue gas (𝐹#1
& ) were 

implemented 44 time intervals (550 s) apart, as displayed in Figure 3. The 44 intervals between the steps were used to 

ensure sufficient time for the %𝐶𝐶 output to reach steady state prior to disturbing the system again. Subsequent smaller 

steps down were implemented in favor of a single large step for ease of convergence in the IPOPT solver.  
Table 6: Price of robustness, offset, and CPU time for increasing uncertainty region sizes 

𝜶 PoR (%) Offset (%) CPU time (s) 
0 (nominal) 0 0 55.71 
0.2 5.74 0.0253 183.14 
0.25 9.57 0.0396 192.42 
0.3 14.82 0.0568 192.74 
0.35 21.77 0.0768 218.73 
0.4 29.36 0.0968 208.27 

 
Table 6 summarizes the results of these tests. As shown in this table, there is substantial performance degradation as 

reflected in the increasing PoR for increasing uncertainty region sizes. This degradation comes mostly in the form of 

offset as displayed in Figure 5. While the nominal NMPC shows no offset, each subsequent robust NMPC controller 

shows an increasing amount of offset with an increased uncertainty region size. A single-scenario NMPC with poorly 

chosen uncertain parameters (i.e. different than the nominal plant parameters), however, would not exhibit off-set free 

performance like the one exhibited by the nominal NMPC. This would be analogous to the case where a NMPC no 

longer has a perfect plant model (plant-model mismatch) and is where multi-scenario approach can be beneficial; this 

type of behavior is investigated in the following sections. It can be also observed in Figure 4 and Figure 5 that the 

conservatism is not reflected in the aggressiveness (or lack thereof) of the control actions as each plant reaches its new 

steady state at approximately similar times for all the robust NMPC controllers.  These figures also show that small 

changes in the manipulated variable reflect with quite substantial changes in the controlled variable. The results in 

Table 6 also suggests that there is an increasing price of robustness difference for constant increases in size of the 

uncertainty region. This nonlinear relationship highlights the need to define an uncertainty region size that covers the 

expected uncertainty but not so large as to squander the potential benefit of the multi-scenario approach. Moreover, a 
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small increase in mean CPU time per simulation can generally be observed for increased sizes of uncertainty region. 

A similar effect was observed in a scheduling context by Li and Ierapetritou [58] and is explained by a decrease in the 

size of the feasible region making it more difficult to find a solution as robustness requirements increase.  

 
Figure 3: Inlet flue gas flowrate (disturbance) for Scenario A (5.1) and Scenario B (5.2) 

 
Figure 4: Inlet solvent flowrate (manipulated variable) for step-down simulations and increasing uncertainty region size 
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Figure 5: Percent Carbon capture (controller variable) for step-down simulations and increasing uncertainty region size 

5.2. Scenario B: Effect of number of realizations 
With the effect of uncertainty region size established, the effects of the number of scenarios considered by the 

controller on performance and CPU time were assessed. The size of the uncertainty region may be different for each 

parameter. In principle, historical plant data, seasonal and diurnal changes in the process, and process heuristics can 

be used to determine the size of the uncertainty. However, for the remainder of this work α = 0.3 was chosen as the 

uncertainty region size for all of the uncertain parameters. This uncertainty region size was selected based on a 

preliminary analysis that showed that a 30% variation in the uncertain parameters represented significant process 

variability that is often observed during operation. Moreover, from the results of Scenario A, it was concluded that 

this uncertainty region size represents an acceptable trade-off between uncertainty region size (robustness) and PoR. 

Each of the uncertain parameters was discretized to its nominal, low or high values to limit the number of possible 

uncertainty realizations. Even with this limitation, since there exist four uncertain parameters that can occur at 

either	𝜃1)8, 𝜃$, or 𝜃o; there are 3* = 81 possible combinations of these parameters. However, including 81 

realizations in a controller is unrealistic as the CPU time would become computationally intractable; thus, the 

maximum number of realizations allowed for a multi-scenario controller was chosen to be 7 based on observed CPU 

times and preliminary closed-loop simulations. These realizations are displayed in Table 7. 
Table 7: Possible parameter realizations for the controllers and the plants 

 S1 (P1) S2 (P2) S3 S4 (P3) S5 S6 (P4) S7 
𝜸𝑴𝑬𝑨	 𝜃1)8 𝜃o 𝜃$ 𝜃o 𝜃$ 𝜃$ 𝜃1)8 
𝜸𝑪𝑶𝟐 𝜃1)8 𝜃o 𝜃$ 𝜃$ 𝜃$ 𝜃o 𝜃1)8 
𝜸𝑯𝟐𝑶 𝜃1)8 𝜃o 𝜃$ 𝜃o 𝜃o 𝜃1)8 𝜃1)8 
𝒚𝒊𝒏
𝑪𝑶𝟐 𝜃1)8 𝜃o 𝜃$ 𝜃o 𝜃o 𝜃1)8 𝜃$ 
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These realizations were chosen with the goal of exploring a mix between expected and worst-case combinations of 

uncertain parameters. That is, the scenarios aim to represent (with only a few realizations), the full set of parameter 

realizations that may actually occur. It would be desirable to include a large number of these scenarios to make the 

controller robust; however, this number is limited by the CPU time. Note that the choice of these parameter realizations 

(as well as the number of realizations) in the controller can drastically affect closed-loop performance. Accordingly, 

the choice of realizations should be tailored to the specific application, especially when the operator has insight on the 

potential uncertainty. In this case specifically, each scenario was chosen as it represented a distinct combination of the 

uncertainty parameters that is significantly different from the other realizations in the uncertain parameter realization 

set. 

While testing the performance of the multi-scenario controllers against a large sample of plants with different 

parameter realizations would be the best way to assess their benefit, time limitations required only simulating the 

controllers in a few plants, which itself still required significant computational effort. As such, a sample of four plants 

with different uncertain parameter realizations was chosen such that it would be as representative as possible to the 

potential variations in uncertain parameters and such that statistical measures approximately reflected the benefits of 

the multi-scenario controller. The chosen simulated plants contained the parameter value realizations in Table 7 that 

correspond to S1, S2, S4, and S6, i.e. P1, P2, P3 and P4, respectively. With regards to the parameter values displayed 

in Table 7, S1 was chosen as it contained only nominal parameter values, S2 was chosen as all values were at the same 

(high) uncertain region boundaries, S4 was chosen as it contained values that were at different (high and low) 

uncertainty region boundaries, and S6 was chosen as it contained a mixture of nominal and uncertainty region 

boundary uncertain parameters.  

Robust NMPC controllers with three, five, and seven scenarios were evaluated on the aforementioned plants. Also, an 

NMPC with uncertain parameters values different that the nominal uncertain parameters was considered. The 

performance of the robust controllers was tested using the same disturbance rejection tests as in Scenario A, shown in 

Figure 3, with a shorter simulation time of 950 seconds. The shorter simulation time was introduced in order to cut 

down on the computational effort required to obtain the results. Nevertheless, it proved to be more than sufficient time 

for the systems to reach their new-steady state after both disturbances are introduced as shown in the results from 

Scenario A. In this scenario, however, the controllers were compared based on their performance indices, as displayed 

in Table 8. 
Table 8: Performance indices of various NMPCs and multi-scenario NMPCs in different plants (i.e. with different uncertain 
parameter realizations). The average column represents the average performance index of a given controller in all plants simulated 
(𝐽𝑐!), with their respective standard deviations (𝜎𝐽𝑐). *Plants where controllers exhibited ringing for the default tuning parameters 

Controller Scenario(s) 𝐉𝐜  
(P1) 

𝐉𝐜 
(P2) 

𝐉𝐜 
(P3) 

𝐉𝐜 
(P4) 

Average 
𝐉𝐜¤ 

Std. 
Dev 
𝛔𝐉𝐜 

Mean 
CPU 
(s) 

No. of 
Equations 

C1 
(Nominal) 

S1  
13.044 19.250 14.576 11.940 14.703 3.218 50.9 64,488 

C2 S2 32.020 11.126 31.646 20.581 23.843 10.00 57.7 64,488 
C3 S1, S2, S3 14.977 15.455 16.475 11.163 14.518 2.322 192.3 193,416 
C4 S1, S2, S3, 

S4, S5 14.679 17.657 15.469 11.969 14.944 2.349 385.7 322,344 
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C5 S1, S2, S3, 
S4, S5, S6, 
S7 15.161 15.700 16.537 11.350 14.687 2.295 718.6 451,272 

 
The results in Table 8 show that the mean CPU time increases as the robust controllers takes more realizations into 

account. This is expected as the size of the problem grows proportionally to the number of scenarios as reflected in 

the number of equations, thus increasing the size of the search space that the NLP solver must consider. The degrees 

of freedom for each problem, however, remained fixed at eight (time intervals in the control horizon) regardless of 

the number of realizations considered in the controller. Nevertheless, since the total model size does grow with 

realizations, it is crucially important to determine whether the sacrifice in computational effort in the multi-scenario 

controllers is worth the increased robustness. For instance, consider C2 (an NMPC controller with parameters on the 

high end of uncertainty region) and C5 (the seven-scenario controller). The mean performance index across all plants 

tested is ~1.62 times higher for C2 while the mean CPU time is time is ~12.45 times higher for C5. On face value, it 

appears that for the additional computational effort required for C5 to be justified, the operator must be placing 

significant priority to performance. However, this experiment only simulates approximately 16 minutes of plant 

operation. This is a relatively short amount of time where only two step-changes in the upstream process are introduced 

into the plant. A longer simulation time, which is unrealistic to perform for all controllers in all plants due to time 

constraints, would better illustrate the performance disparity between the two controllers. Nevertheless, in a real test 

scenario the PCC absorber could be operating continuously for days provided that the downstream combustion process 

is operating.  

Despite the large computational cost of C5, very similar performance improvement over C2 was achieved with the 

three-scenario controller (C3) without as much additional computational burden. The mean performance of C2 is 

~1.64 times higher than that of C3, while the mean computational time of C3 is a much more reasonable (compared 

to C5) ~3.33 times higher than that of C2.  This, with C3 the operator would still be placing priority on performance 

over computational burden but not nearly as much as with C5. As mentioned above, this performance disparity would 

become increasingly large with longer test times as more error accrues in the performance indices. Although the 

performance of C3 and C5 are very similar despite much larger mean CPU times for C5, it should be noted that this 

is likely due to the small sample of plants used in this study. Across a larger set of plants, we would expect to see a 

clear benefit when using C5 since it is the most robust controller. 

As indicated in Section 5, the uncertain parameters have been chosen to be uniformly distributed with their nominal 

parameter values in the center of the distribution. As a result, C1, which contains the uncertain parameters’ nominal 

values that are centrally positioned in the uncertainty region; is expected to have some inherent robustness and 

therefore present good performance in most plant cases (as show in Table 8). This is analogous to the case where a 

NMPC is designed with well-chosen/estimated parameters and is reflected in C1s average performance index (𝐽j¤  in 

Table 8), which is closer to that of the robust multi-scenario controllers (C3,C4, and C5) than that of the other single-

scenario controller with large plant-model mismatch (i.e. C2). However, it is not always the case that parameters can 

be well chosen/estimated, i.e. when the parameter estimation problem is too large, not repeated frequently enough, or 

when variables are approximated as parameters. To contrast, C2 (i.e. the NMPC with parameter values at the high end 

of the uncertainty region) was observed to show substantially worse performance than C1, as reflected in the average 
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performance index of C1 which is ~0.617 times that of C2. This is because C2 lacks the inherent robustness imparted 

on C1 by having centrally located parameter values in the uncertainty region and is analogous to the case where the 

NMPC is designed with poorly chosen/estimated parameters. Moreover, for C1 and C2, we observe a larger standard 

deviation in their performance across plants. This is particularly evident in C2 but still noticeable with C1. This means 

that these controllers show more variation in their performance in different plants (i.e. good performance in some 

plants and poor performance in others). Take for instance C1, which performs well relative to other controllers in P1 

but less so in P2. C1s performance in P1 should be very good as its single scenario contains no plant-model mismatch 

to P1. However, its performance in P2 is worse because all the parameter values are largely mismatched; the converse 

can be said about C2. In contrast, the multi-scenario controllers show a more consistent performance among the 

different plants tested as reflected in their low deviations for the plant sample although the mean performances indices 

are very similar to that of C1. Having consistent operation despite uncertainty, such as the proposed robust NMPC 

enables, is crucial for a process like PCC as its economics and emissions must be controllable to be attractive for 

industrial implementation. Load changes in the upstream power plant are common and cause these operational 

disturbances, making it important to consider them on a model level. 

Since we are assessing the controllers based on their performance index, it is important to notice that the experiment 

designed in this section has two subsequent transients and little time for the %𝐶𝐶(controlled variable) to be at steady-

state. More time at steady-state and longer simulations times would allow the performance index to accrue more error 

and the benefits of the robust controllers would be even more pronounced as they would display reduced set point 

offset. This effect will be shown in the next section as we consider a prolonged test case that the controller might 

encounter in a real MEA-based PCC absorber’s daily operation. 

5.3. Scenario C: Diurnal variation in flue gas  

As stated above, the absorber’s operation will occur downstream from a CO2 emission source resulting in exogenous 

disturbances to the PCC plant operation. Coal-fired power plants are of specific interest to be retrofitted with PCC 

units and, as such, the coal-fired power plant will dictate the daily operational variation of the PCC plant. 

Conveniently, this provides a realistic test case under which the robust NMPC designed for the MEA PCC absorber 

can be evaluated for a longer operational period than in Section 5.2.  

Due to diurnal variation in consumer demands, energy consumption occurs in a cyclical manner whereby the demand 

is highest in the middle of the day and lowest during the night. Similarly, for a region that is dependent on coal-fired 

power, the demand to the plant will also be cyclical leading to a periodic variation in the quantity of flue gas released. 

This periodic variation in the flue gas released by the plant provides a periodic disturbance to the MEA PCC plant. 

An example of region that is reliant on coal-fire power and experiences a diurnal demand variation is the Canadian 

province of Alberta. Based on an single-day data from the Alberta Electric System Operator (AESO), the cycle 

amplitude of the province’s daily internal load is ~8.95% of the midline (average load) [59]. 
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Figure 6: Diurnal Inlet flue gas flowrate variation (disturbance) for Scenario C (5.3)  

As such, the disturbance in the flue gas flowrate shown in Figure 6 was used to approximate the single-day cycle in 

order to test the efficacy of several controllers for a single cycle. The periodic behavior was approximated as step 

changes in the flue gas flowrate to the absorber every 45 sampling intervals (~9.4 minutes). The amplitude of the 

variation in flue gas flowrate was assumed to be 10%  of the midline flowrate based on the aforementioned daily 

observations from AESO. The cycle length was compressed to 75 minutes due to time limitations as a 24h simulation 

would be prohibitively long. Nonetheless, all controllers were shown to exhibit fast enough responses to reject each 

step disturbance before a subsequent one was introduced into the system.  

For this test case, NMPC controllers involving one and three-scenarios (𝛼 = 0.3) were implemented. The three-

scenario robust NMPC controller was chosen as it could be shown to have benefits over single-scenario NMPCs with 

plant model-mismatch as demonstrated in section 5.2 while maintaining more acceptable computational costs relative 

to higher-scenario controllers. Specifically, controllers C1, C2, and C3 (Table 8) were implemented in P1, i.e. plant 

with nominal uncertain parameters (Table 7). Moreover, to further elucidate the benefits of the multi-scenario 

controller more clearly, uncertain parameters values for a second test plant were randomly generated (based on a 

uniform distribution) inside the 30% uncertainty region. In addition to testing C1, C2, and C3 for a longer simulation 

in P1, the controllers were also implemented in this plant (P5) using random values in the uncertain parameters. The 

parameter values for P5 are displayed in Table 9. 
Table 9: Randomly determined uncertain parameter realization for Plant 5 

Uncertain Parameter (𝜽) 𝜽𝑷𝟓 
𝛾<=>	 0.846 
𝛾23! 0.453 
𝛾4!3 1.062 
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𝑦#1
23! 0.182 

 

Table 10: Performance indices and CPU times for single-scenario (C1 & C2) and multi-scenario (C3) NMPCs in Plant 1 and 
Plant 5 

Controller Scenario(s) 𝑱𝒄  
(P1) 

Mean 
CPU (s) 

𝑱𝒄  
(P5) 

Mean 
CPU (s) 

C1 (Nominal) S1 33.143 74.135 66.281 47.427 
C2  S2 157.647 79.583 71.593 58.422 
C3 S1, S2, S3 39.021 186.750 35.151 202.908 

 
 

Table 10 summarizes the results for this scenario. As expected, the multi-scenario controller (C3) exhibited far better 

performance than the single-scenario NMPC with plant-model mismatch (i.e. C2) in P1. This was markedly illustrated 

by the longer simulation length of 75 minutes in this scenario compared to 18.75 minutes in the simulation from 

Scenario B. This is further exhibited in Figure 7,where the performance of C3 when employed in P1 is much more 

like the performance of the C1 (nominal controller) than that of C2 (controller with plant-model mismatch). Moreover, 

although the robust controller (C3) requires on average ~2.35 times the computational effort of C2, its performance 

index is ~0.25 times that of C2, thus justifying the additional computational effort.  This reinforces the notion that the 

robust controller’s benefits are more clearly observed over a longer operating window. 

 
Figure 7: Percent Carbon capture for diurnal variation in flue gas simulations in P1 

In P5 (random plant uncertain parameter realization), both C1 and C2 performed relatively similarly with respect to 

performance indices and CPU times as shown in  
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Table 10. However, as with P1, the robust NMPC controller (C3) exhibited a better performance index that is half of 

that observed for C1 and C2. Note that in this case, C1 (nominal NMPC) has plant-model mismatch because plant P5 

contains random realizations in the uncertain parameters, which no longer correspond to those in C1. This robustness 

came at a significant computational cost as each NMPC execution for C3 required ~4 times the CPU time relative to 

C1 and C2. Nevertheless, as shown in the simulations over a longer operational time, the benefits of a robust NMPC 

are evident even when only a small number of scenarios are considered. This performance benefit accrues over time 

and is significant in a plant that operates continuously for several hours or days such as a PCC plant. The simulations 

performed in this section, although longer than that shown in the previous scenario, are still relatively short compared 

to the operational time of a PCC plant. Consequently, real plant operation would see even more pronounced benefits 

from using the multi-scenario approach. As mentioned earlier, consistent performance despite uncertainty is essential 

to the PCC process. We have demonstrated in this scenario that, given a realistic load following experiment, the robust 

controller has superior regulatory performance for the %CC set-points. Having robust control, such as that presented 

in this work, makes the process industrially viable given the importance of economics and emissions. 

6. Conclusions and future work 

A robust NMPC for a post-combustion CO2 capture absorber was presented. The robust operation of the absorber 

under parametric and process uncertainty using the robust NMPC controller was compared against that of nominal 

and plant-model mismatched NMPCs for various disturbance rejection scenarios. This is the first explicit treatment of 

uncertainty associated with operating conditions and physical property descriptions in the MEA PCC process and it 

was enabled by the use of a dynamic mechanistic model. The controllers were assessed in a simulated plant with plant-

model mismatch to elucidate the benefits of the multi-scenario approach used in the design of the robust NMPC. As 

expected, the computational demands of the robust NMPC controllers were found to be increasing with increasing 

size of uncertainty regions and increasing number scenarios considered by the controller. Moreover, a larger 

uncertainty region was found to exhibit more conservativism in the control moves leading to offset. Nevertheless, it 

was found that for short simulation times the robust NMPCs generally led to better average performance and less 

variability in performance across plants in which the controllers were tested. Further, for long simulations, where error 

can accrue over time; the performance of a robust NMPC controller was found to be significantly better than that of 

the NMPCs with no robustness. 

There remain a few issues to be solved before an approach using this nonlinear model becomes tractable. Namely, a 

reduction in CPU time is necessary for online implementation of the NMPCs presented in this study. This 

computational effort reduction can be achieved with fast NMPC algorithms, which use model reduction [60] and 

advanced step strategies [61]. However, model reduction strategies may not be able to capture process nonlinearities 

and may not be able to consider parametric uncertainty in the same level of detail as presented in this study. Thus, 

advanced dynamic optimization decomposition techniques may be considered to reduce the computational effort. 

Furthermore, this work operates under the assumption of full access to the plant states. Accordingly, a state estimation 

method for this system is also required and is a problem that has not been addressed in the literature for the CO2 

absorber system. To this end, conventional estimation methods such as Kalman filter (KF) and extended Kalman filter 

(EKF), or optimization methods like moving horizon estimation (MHE) can be considered. Likewise, as shown in this 
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work, the robust NMPC controllers do not have perfect performance and result in some set-point offset. A natural 

extension of the multi-scenario-based robust controller to further reduce this conservatism is the design of a multi-

stage robust controller [62]. Furthermore, the scope of this work was limited to the application of the robust NMPC 

controller to the absorber in the PCC plant, a natural extension to this would be its application to the full PCC plant. 

This will come with additional computational challenges as considering the complete plant in a mechanistic model 

would result in an even larger optimization problem than that presented in this study.  
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