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The CO2 problem
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Muntean, M., Guizzardi, D., Schaaf, E., Crippa, M., Solazzo, E., Olivier, J. and Vignati, E. (2018). Fossil
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CO2 capture methods

§ Pre-combustion

§ Oxy-combustion

§ Chemical looping combustion

§ Post-combustion (PCC)*

*most mature technology



MEA Solvent Post Combustion Carbon Capture (PCC) System
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L. Teck Chan and J. Chen. Economic model predictive control of an absorber-stripper CO2 capture process for improving energy cost. IFAC-PapersOnLine, vol. 51, no. 18, pp. 109-114, 2018. 



PCC economic operation and control
§ Nonlinear model prediction control (NMPC)

§ Reduced order absorber model (Akeson et al.,2012)

§ Robust mechanistic absorber model (Patrón and Ricardez-Sandoval, 2020)

§ Economical operation
§ Linear multivariable MPC for PCC plant (Panahi and Skogestad, 2012)

§ Economic MPC 
§ Chan and Chen (2018)

§ Decardi-Nelson, Liu and Liu (2018)

A two-layer RTO approach has not been tested for the PCC
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Motivation, Challenges, and Objectives
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Objectives

§ Operate the absorber in an 
economically optimal way subject to 
upstream disturbances and changing 
carbon tax prices

Challenges

§ Cost reduction and carbon capture 
are conflicting objectives

§ State estimation is required

Motivation

§ The absorber is of economic detriment 
to the upstream power plant

§ The power plant introduces 
disturbances to the absorber, creating 
economic suboptimality

Flue gas: 
𝑇"#
$, 𝐹"#

$ , 𝑦"#

Vent gas

CO2-rich amine solution

Lean amine solution: 
𝑇"#
( , 𝐹"#

( , 𝑥"#

Components ={MEA,CO2,H2O,N2}



Research objectives
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PlantManipulated 
variables 

(𝒖𝒕,𝟏)

Set points (𝒚𝒕,𝒊
𝒔𝒑 )

Predicted States (3𝒙𝒕 = 𝒙𝟎)

Nonlinear Model 
Predictive 

Control (NMPC) 

Real-time 
optimization 

(RTO)

Predicted
states

(3𝒙𝒕) Kalman Filter 
(KF)

(𝑡 ← 𝑡 + 1)
Noisy 

measurements
( 𝒛𝒕+𝒗𝒕)

Disturbances
(𝒅𝒕)

§ Novel RTO formulation for 
absorber

§ Mechanistic process model in RTO 
and NMPC layer

§ State estimation for absorber

*all methods require models



Differential Model of CO2 Absorber Column - 𝒇 𝒙 ∗
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Energy
Liquid 𝑑𝑇(

𝑑𝑡 = 𝑢(
𝜕𝑇(
𝜕𝑧 −

𝑎G
∑"IJK 𝑐M,"( 𝐶"(

ℎ$( 𝑇( − 𝑇$ + ∆𝐻RS#𝑁UVW − ∆𝐻XWV
YZM𝑁XWV + ℎ[\] 𝑇( − 𝑇Z^_

Gas 𝑑𝑇$
𝑑𝑡 = −𝑢$

𝜕𝑇$
𝜕𝑧 +

𝑎G
∑"IJK 𝑐M,"

$ 𝐶"
$ ℎ$( 𝑇( − 𝑇$

Mass
Liquid 𝑑𝐶"(

𝑑𝑡 = 𝑢(
𝜕𝐶"(

𝜕𝑧 + 𝑎G𝑁"

Gas 𝑑𝐶"
$

𝑑𝑡
= −𝑢$

𝜕𝐶"
$

𝜕𝑧
− 𝑎G𝑁" − 𝐶"

$ 𝜕𝑢$
𝜕𝑧

𝑖=MEA,CO2,H2O, N2

§ Phenomenological and physical property equations (h(𝒙))

§ Non-discretized model has 12 PDEs and 160 AEs

* Adapted from Harun et al. (2012)



Model Implementation
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§ PDAEs discretized by finite differences in axial domain and orthogonal 
collocations in time domain

§ Model size (after discretization):
§ Axially (RTO) ⇒ ~2,000 nonlinear algebraic equations

§ Axially and temporally (NMPC) ⇒ ~64,000 nonlinear algebraic equations

§ IPOPT (Wächter and Biegler, 2005)



RTO Formulation
§ Steady-state optimization

§ Three sources of cost:
§ MEA degradation (per tonne of CO2 removed)

§ Carbon Tax (per tonne of CO2 emitted)

§ Electricity
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min
%UUfg

PijkṁmnW,[\]
o + PmnWṁmnW,[\]

p + PqWstus

𝑠. 𝑡.
𝒇 𝒙𝒕, 𝒖𝒕 = 𝟎
𝒉 𝒙𝒕, 𝒖𝒕 = y𝒀𝒕
𝒖𝒍 ≤ 𝒖𝒕 ≤ 𝒖𝒉

PlantManipulated 
variables 

(𝒖𝒕,𝟏)

Set point (%𝐶𝐶}~)

Predicted States (3𝒙𝒕 = 𝒙𝟎)

NMPC

RTO

Predicted
states

(3𝒙𝒕) KF

(𝑡 ← 𝑡 + 1)
Noisy 

measurements
( 𝒛𝒕+𝒗𝒕)

Disturbances (𝒅𝒕)



NMPC Formulation
§ Dynamic optimization

§ Tracking and move suppression terms

§ Manipulated variable bounds
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min
���,���
� ∀�∈ J,…,U

𝑸�
"IJ

~

�%𝐶𝐶]," − %𝐶𝐶}~
� + 𝑹�

�IJ

U

∆𝐹"#,],�( �

𝑠. 𝑡.
𝒇 𝒙𝒕, 𝒖𝒕,𝒋 = 3𝒙𝒕,𝒊; ∀𝑖 ∈ 1, … , 𝑃

∀𝑗 ∈ 1, … , 𝐶
𝒙𝒕 = 𝒙𝟎
𝒉 3𝒙𝒕,𝒊, 𝒖𝒕,𝒋 = y𝒀𝒕,𝒊; ∀𝑖 ∈ 1, … , 𝑃

∀𝑗 ∈ 1, … , 𝐶
𝐹"#
(,( ≤ 𝐹"#,],�( ≤ 𝐹"#

(,\; ∀𝑗 ∈ 1, … , 𝐶

PlantManipulated 
variable 
(𝐹"#,],J( )

%𝐶𝐶}~

Predicted States (3𝒙𝒕 = 𝒙𝟎)

NMPC

RTO

Predicted
states

(3𝒙𝒕) KF

(𝑡 ← 𝑡 + 1)
Noisy 

measurements
( 𝒛𝒕+𝒗𝒕)

Disturbances (𝒅𝒕)



KF Formulation
§ 74/110 states measured

§ Temperatures, gas concentrations, inlet/outlet states

§ A priori predictions generated using 
mechanistic model

§ Jacobian matrix for generated symbolically
§ 3𝒙𝒌|𝒌�𝟏 = 𝒇 3𝒙𝒌�𝟏|𝒌�𝟏, 𝒖𝒌

§ 𝑷𝒌|𝒌�𝟏 = 𝑱𝒇 𝑷𝒌�𝟏|𝒌�𝟏 𝑱𝒇𝑻+ 𝑸𝒌

§ 𝑲𝒌= 𝑷𝒌|𝒌�𝟏 𝑱𝒉𝑻(𝑱𝒉𝑷𝒌|𝒌�𝟏 𝑱𝒉𝑻+ 𝑹𝒌) �𝟏

§ 3𝒙𝒌|𝒌 = 3𝒙𝒌|𝒌�𝟏 + 𝑲𝒌 𝒛𝒌 − 𝑯𝒌3𝒙𝒌|𝒌�𝟏

§ 𝑷𝒌|𝒌 = (𝑰 − 𝑲𝒌𝑱𝒉) 𝑷𝒌|𝒌�𝟏
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Plant𝐹"#,],J(

%𝐶𝐶}~

Predicted States (3𝒙𝒕 = 𝒙𝟎)

NMPC

RTO

Predicted
states

(3𝒙𝒕) KF

(𝑡 ← 𝑡 + 1)
Noisy 

measurements
( 𝒛𝒕+𝒗𝒕)

Disturbances (𝒅𝒕)



Results (test scenarios)
1. NMPC only (no RTO)

2. RTO (carbon tax at fixed 50 $CAD/tn CO2 emitted)

3. RTO (time-varying carbon tax)
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Result (process cost)
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Scenario Total Cost Tax 
Cost

MEA 
Cost

Electrical 
Cost

No RTO (fixed tax) 13.46 6.31 7.13 0.01

No RTO (varying tax) 14.64 7.50 7.13 0.01

RTO (fixed tax) 11.98 6.31 5.67 0.01

RTO (varying tax) 13.23 7.51 5.70 0.01

*costs in $CAD

RTO sensitive to MEA cost



Results (profiles)
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§ Fixed and varying tax case are only substantially different in final two RTO periods



Results (profiles)
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§ RTO only sensitive to tax rate when it coincides with large disturbances



Results (profiles)
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§ Large disturbances cause unreachable set points in no RTO scenario

§ These are avoided by the executing the RTO



Results (computational times)
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CPU 
time 
[s]

Number 
of 

equations

Key 
outputs

RTO ~15 s 1,861 1 
(%𝐶𝐶}~) 

NMPC ~60 s 64,480 9 (𝐹"#,],J( )

KF
(a priori) ~4 s 1,861

110 (3𝒙𝒕)KF
(a posteriori) <1 s 110

Plant
Manipulated 

variable 
(𝐹"#,],J( )

%𝐶𝐶}~

Predicted States (3𝒙𝒕 = 𝒙𝟎)

NMPC

RTO

Predicted
states

(3𝒙𝒕) KF

(𝑡 ← 𝑡 + 1)
Noisy 

measurements
( 𝒛𝒕+𝒗𝒕)



Conclusions
§ RTO provides substantial economic benefit and avoids unreachable setpoints

§ Carbon tax rate only impacts economics when under large disturbances

§ KF is able to compute states at a computational cost
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Future Work
§ Investigate more advanced estimation schemes (i.e. moving horizon estimation)

§ Account for plant—model mismatch via parameter or modifier adaptation

§ Merge RTO and NMPC layers by formulating an economic NMPC

§ Consider entire post-combustion CO2 plant (i.e. stripper, heat exchange units,
tanks)
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