Real-Time Optimization and Nonlinear Model Predictive Control for a Post-Combustion Carbon Capture Absorber

21st IFAC World Congress: July 13th-17th, 2020

Gabriel D. Patrón

Luis A. Ricardez-Sandoval

Department of Chemical Engineering

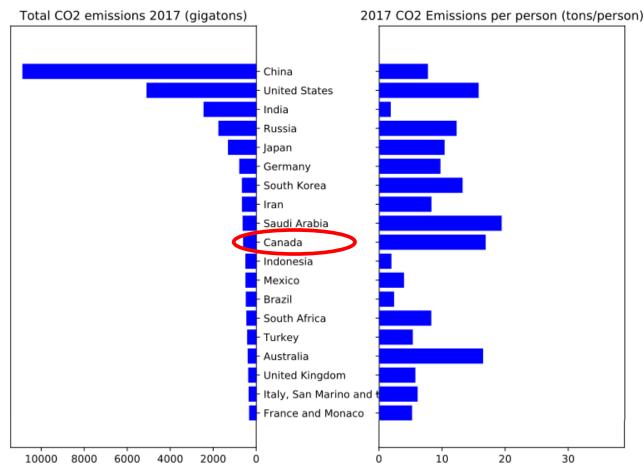
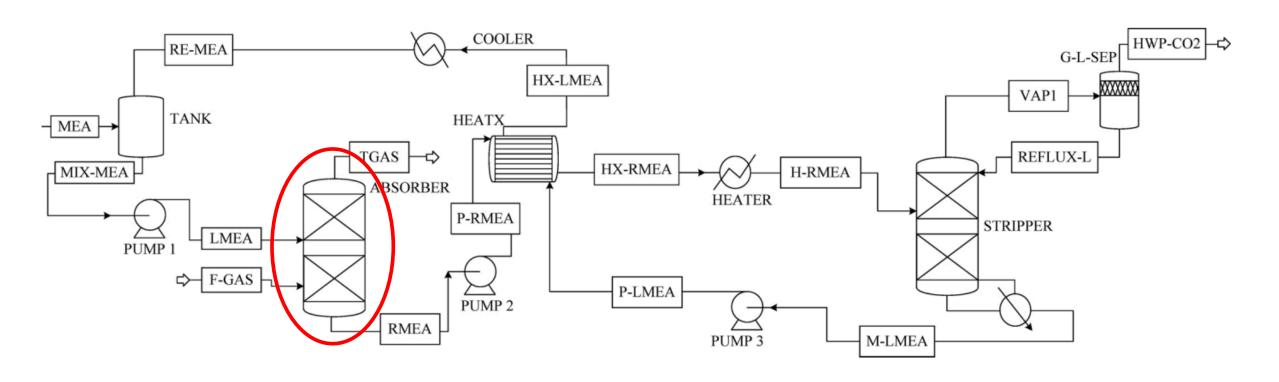


Table of Contents

- 1. Motivation, challenges, and objectives
- 2. Model, implementation, and formulation
- 3. Test conditions and results
- 4. Conclusions and Future Work

The CO₂ problem

Muntean, M., Guizzardi, D., Schaaf, E., Crippa, M., Solazzo, E., Olivier, J. and Vignati, E. (2018). *Fossil CO2 Emissions of All World Countries: 2018 Report*. Luxembourg: Joint Research Centre (European Commission).


CO2 capture methods

- Pre-combustion
- Oxy-combustion
- Chemical looping combustion
- Post-combustion (PCC)*

*most mature technology

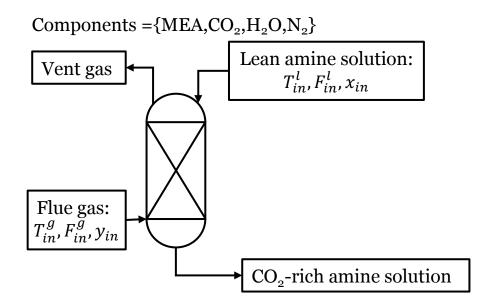
MEA Solvent Post Combustion Carbon Capture (PCC) System

L. Teck Chan and J. Chen. Economic model predictive control of an absorber-stripper CO₂ capture process for improving energy cost. IFAC-PapersOnLine, vol. 51, no. 18, pp. 109-114, 2018.

PCC economic operation and control

- Nonlinear model prediction control (NMPC)
 - Reduced order absorber model (Akeson et al.,2012)
 - Robust mechanistic absorber model (Patrón and Ricardez-Sandoval, 2020)
- Economical operation
 - Linear multivariable MPC for PCC plant (Panahi and Skogestad, 2012)
- Economic MPC
 - Chan and Chen (2018)
 - Decardi-Nelson, Liu and Liu (2018)

A two-layer RTO approach has not been tested for the PCC

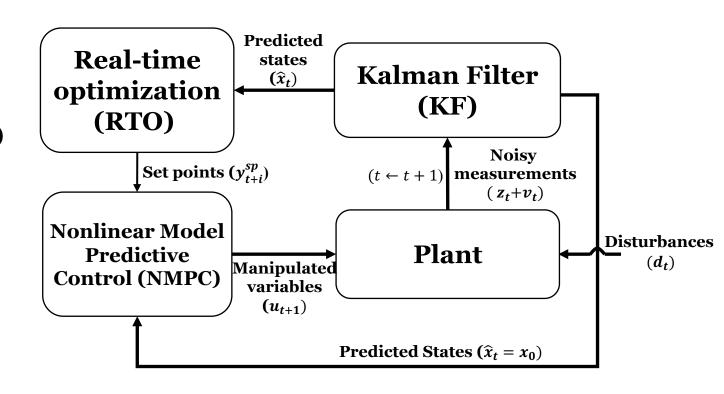

Motivation, Challenges, and Objectives

Motivation

- The absorber is of economic detriment to the upstream power plant
- The power plant introduces disturbances to the absorber, creating economic suboptimality

<u>Objectives</u>

 Operate the absorber in an economically optimal way subject to upstream disturbances and changing carbon tax prices


<u>Challenges</u>

- Cost reduction and carbon capture are conflicting objectives
- State estimation is required

Research objectives

- Novel RTO formulation for absorber
- Mechanistic process model in RTO and NMPC layer
- State estimation for absorber

*all methods require models

Differential Model of CO_2 Absorber Column - f(x)

 $i=MEA,CO_2,H_2O,N_2$

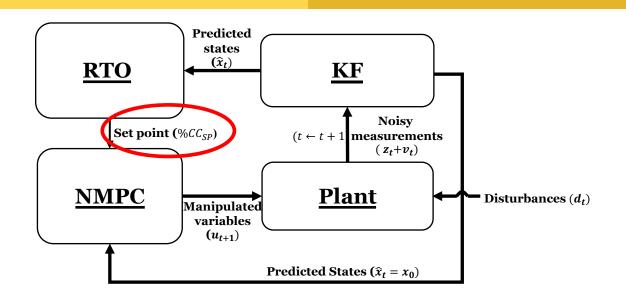
* Adapted from Harun et al. (2012)

	Mass
Liquid	$\frac{dC_i^l}{dt} = u_l \frac{\partial C_i^l}{\partial z} + a_w N_i$
Gas	$\frac{dC_i^g}{dt} = -u_g \frac{\partial C_i^g}{\partial z} - a_w N_i - C_i^g \frac{\partial u_g}{\partial z}$
	Energy
Liquid	$\frac{dT_{l}}{dt} = u_{l} \frac{\partial T_{l}}{\partial z} - \frac{a_{w}}{\sum_{i=1}^{4} c_{p,i}^{l} C_{i}^{l}} \left[h_{gl} \left(T_{l} - T_{g} \right) + \Delta H_{rxn} N_{CO_{2}} - \Delta H_{H_{2}O}^{vap} N_{H_{2}O} + h_{out} \left(T_{l} - T_{amb} \right) \right]$
Gas	$\frac{dT_g}{dt} = -u_g \frac{\partial T_g}{\partial z} + \frac{a_w}{\sum_{i=1}^4 c_{p,i}^g C_i^g} \left[h_{gl} \left(T_l - T_g \right) \right]$

- Phenomenological and physical property equations (h(x))
- Non-discretized model has 12 PDEs and 160 AEs

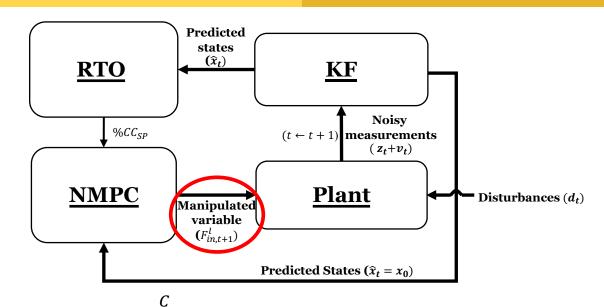
Model Implementation

- PDAEs discretized by finite differences in axial domain and orthogonal collocations in time domain
- Model size (after discretization):
 - Axially (RTO) \Rightarrow ~2,000 nonlinear algebraic equations
 - Axially and temporally (NMPC) $\Rightarrow \sim 64,000$ nonlinear algebraic equations
- IPOPT (Wächter and Biegler, 2005)



RTO Formulation

- Steady-state optimization
- Three sources of cost:
 - MEA degradation (per tonne of CO₂ removed)
 - Carbon Tax (per tonne of CO₂ emitted)
 - Electricity


$$\begin{aligned} & \min_{\%CC_{SP}} P_{\text{MEA}} \dot{m}_{\text{CO}_2,out}^l + P_{\text{CO}_2} \dot{m}_{\text{CO}_2,out}^g + P_{\text{e}} W_{\text{pump}} \\ & s. t. \\ & f(x_t, u_t) = \mathbf{0} \\ & h(x_t, u_t) = \widehat{Y}_t \\ & u^l \leq u_t \leq u^h \end{aligned}$$

NMPC Formulation

- Dynamic optimization
- Tracking and move suppression terms
- Manipulated variable bounds

$$\min_{\substack{F_{in,t+j}^{g} \forall j \in \{1,...,C\}\\ F_{in,t+j}^{g} \forall j \in \{1,...,C\}}} \mathbf{Q} \sum_{i=1}^{P} (\widehat{\mathscr{C}C}_{t+i} - \mathscr{C}C_{SP})^{2} + \mathbf{R} \sum_{j=1}^{C} \Delta F_{in,t+j}^{l}^{2}$$
s. t.
$$f(\mathbf{x}_{t}, \mathbf{u}_{t+j}) = \widehat{\mathbf{x}}_{t+i}; \qquad \forall i \in \{1, ..., P\} \\
\forall j \in \{1, ..., C\}$$

$$\mathbf{x}_{t} = \mathbf{x}_{0}$$

$$\mathbf{h}(\widehat{\mathbf{x}}_{t+i}, \mathbf{u}_{t+j}) = \widehat{\mathbf{Y}}_{t+i}; \qquad \forall i \in \{1, ..., P\}$$

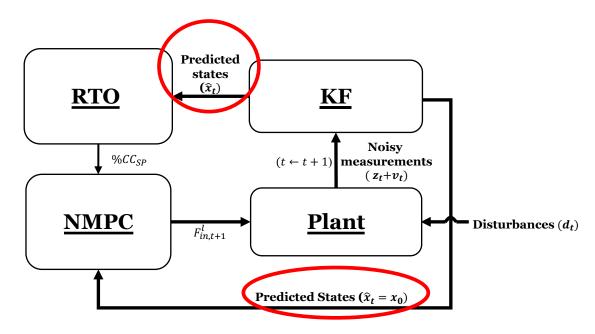
$$\forall j \in \{1, ..., C\}$$

$$\forall j \in \{1, ..., C\}$$

$$\forall j \in \{1, ..., C\}$$

KF Formulation

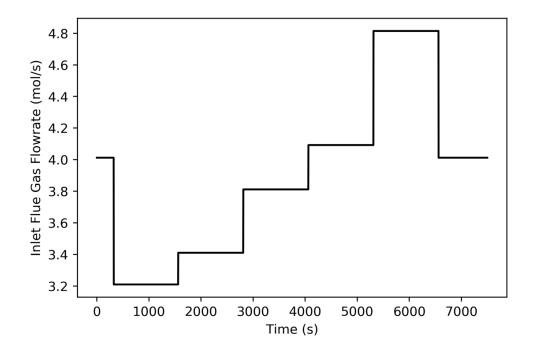
- 74/110 states measured
 - Temperatures, gas concentrations, inlet/outlet states
- *A priori* predictions generated using mechanistic model
- Jacobian matrix for generated symbolically

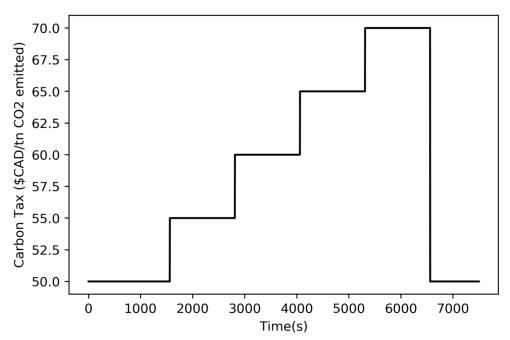

$$\bullet \widehat{x}_{k|k-1} = f(\widehat{x}_{k-1|k-1}, u_k)$$

•
$$P_{k|k-1} = J_f P_{k-1|k-1} J_f^T + Q_k$$

•
$$K_k = P_{k|k-1} J_h^T (J_h P_{k|k-1} J_h^T + R_k)^{-1}$$

$$\bullet \widehat{x}_{k|k} = \widehat{x}_{k|k-1} + K_k(z_k - H_k \widehat{x}_{k|k-1})$$

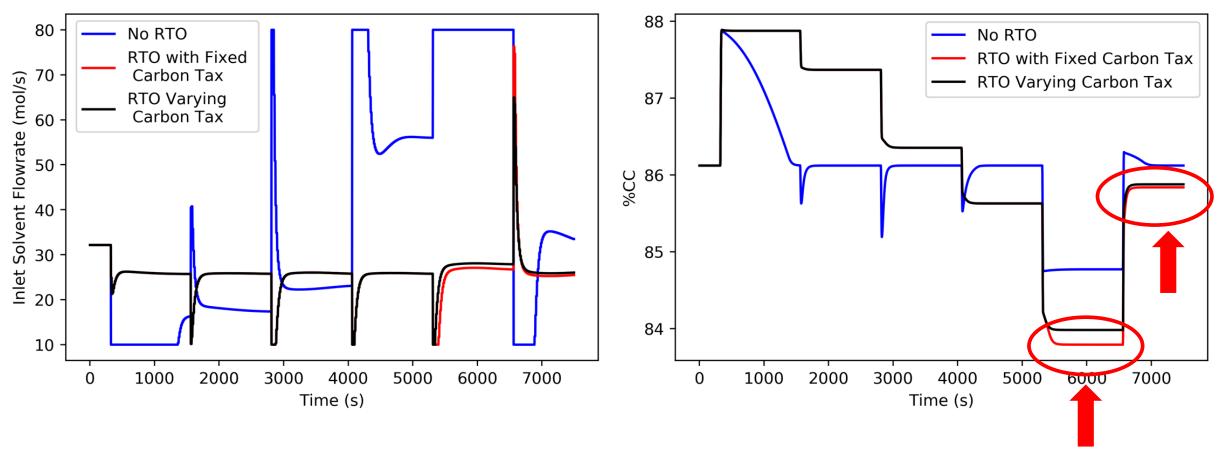

$$P_{k|k} = (I - K_k J_h) P_{k|k-1}$$



Results (test scenarios)

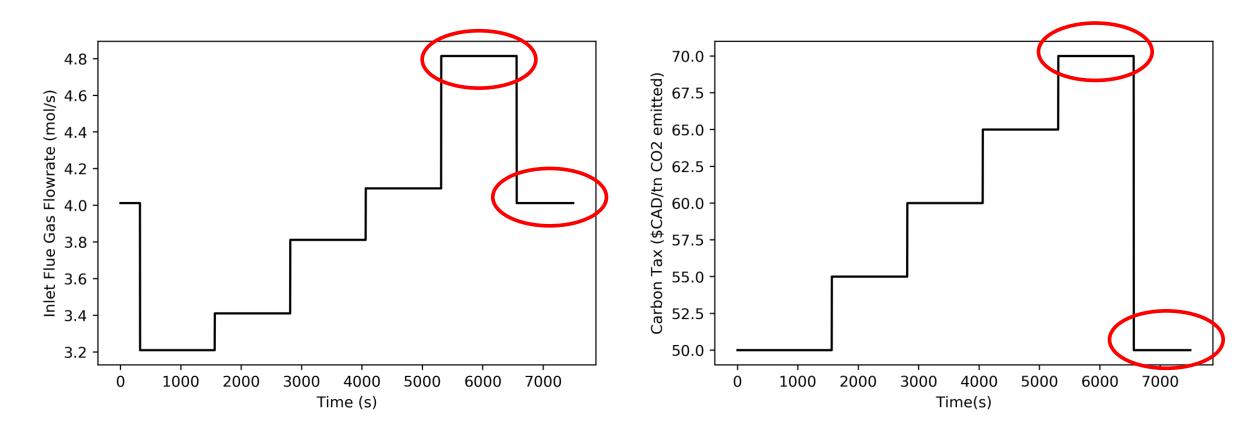
- 1. NMPC only (no RTO)
- 2. RTO (carbon tax at fixed 50 \$CAD/tn CO₂ emitted)
- 3. RTO (time-varying carbon tax)

Result (process cost)

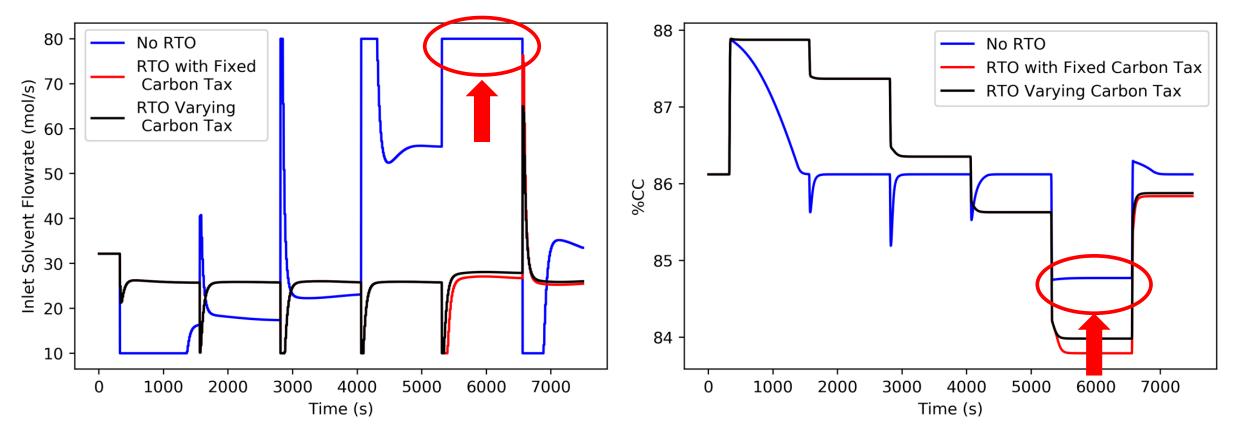

*costs in \$CAD

Scenario	Total Cost	Tax Cost	MEA Cost	Electrical Cost
No RTO (fixed tax)	13.46	6.31	7.13	0.01
No RTO (varying tax)	14.64	7.50	7.13	0.01
RTO (fixed tax)	11.98	6.31	5.67	0.01
RTO (varying tax)	13.23	7.51	5.70	0.01

RTO sensitive to MEA cost

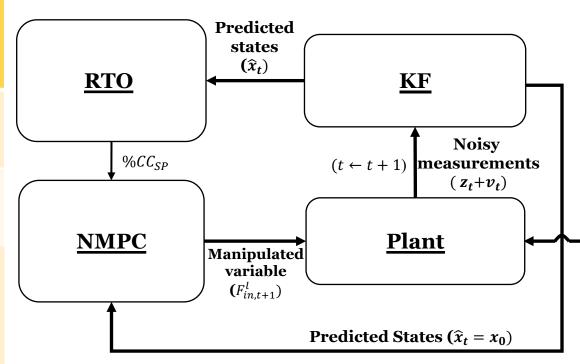

Results (profiles)

Fixed and varying tax case are only substantially different in final two RTO periods


Results (profiles)

• RTO only sensitive to tax rate when it coincides with large disturbances

Results (profiles)



- Large disturbances cause unreachable set points in no RTO scenario
- These are avoided by the executing the RTO

Results (computational times)

	CPU time [s]	Number of equations	Key outputs
RTO	~15 s	1,861	$1 \\ (\%CC_{SP})$
NMPC	~60 s	64,480	$9\left(F_{in,t+1}^{l}\right)$
KF (a priori)	~4 s	1,861	110 (2)
KF (a posteriori)	<1 S	110	110 (\hat{x}_t)

Conclusions

- RTO provides substantial economic benefit and avoids unreachable setpoints
- Carbon tax rate only impacts economics when under large disturbances
- KF is able to compute states at a computational cost

Future Work

- Investigate more advanced estimation schemes (i.e. moving horizon estimation)
- Account for plant—model mismatch via parameter or modifier adaptation
- Merge RTO and NMPC layers by formulating an economic NMPC
- Consider entire post-combustion CO2 plant (i.e. stripper, heat exchange units, tanks)

Thank you

g2patron@uwaterloo.ca

laricardezsandoval@uwaterloo.ca

https://uwaterloo.ca/chemical-process-optimization-multiscale-modelling-process-systems/

References

Åkesson, J., Laird, C., Lavedan, G., Prölß, K., Tummescheit, H., Velut, S. and Zhu, Y. (2012). Nonlinear Model Predictive Control of a CO2 Post-Combustion Absorption Unit. *Chemical Engineering & Technology*, 35(3), pp.445-454.

Auc.ab.ca. (2019). Current rates and terms of conditions. [online] Available at: http://www.auc.ab.ca/Pages/current-rates-electric.aspx [Accessed 10 Oct. 2019.].

Canada.ca. (2019). *Pricing carbon pollution in Canada: how it will work*. [online] Available at: https://www.canada.ca/en/environment-climate-change/news/2017/05/pricing_carbon_pollutionincanadahowitwillwork.html [Accessed 10 Oct. 2019].

Chan, L. and Chen, J. (2018). Improving the energy cost of an absorber-stripper CO2 capture process through economic model predictive control. *International Journal of Greenhouse Gas Control*, 76, pp.158-166.

Decardi-Nelson, B., Liu, S. and Liu, J. (2018). Improving Flexibility and Energy Efficiency of Post-Combustion CO2 Capture Plants Using Economic Model Predictive Control. *Processes*, 6, 135.

Hart W, Watson J, Woodruff D. (2011). Pyomo: modeling and solving mathematical programs in Python. Mathematical Programming Computation, 3(3):219-60.

Harun, N., Nittaya, T., Douglas, P., Croiset, E. and Ricardez- Sandoval, L. (2012). Dynamic simulation of MEA absorption process for CO2 capture from power plants. *International Journal of Greenhouse Gas Control*, 10, pp.295-309.

Panahi, M. and Skogestad, S. (2012). Economically efficient operation of CO2 capturing process. Part II. Design of control layer. *Chemical Engineering and Processing: Process Intensification*, 52, pp.112-124.

Patron, G. and Ricardez-Sandoval, L., 2020. A robust nonlinear model predictive controller for a post-combustion CO2 capture absorber unit. Fuel, 265, 116932.

Wächter A, Biegler L. (2005). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. *Mathematical Programming*, 106(1):25–57.

