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Abstract 

Uncertainty is inherent to the measurement and modelling of process systems, where it can have significant impacts 

on the efficacy of optimization techniques. This work proposes a scheme to address uncertainty as it pertains to real-

time optimization (RTO), where noisy measurements are used to estimate model parameters and account for model 

uncertainty. The parameter estimation (PE) step that accompanies RTO requires plant measurements that are often 

noisy; this can cause the propagation of noise to the parameter estimates, which may result in poor RTO performance. 

An information content (𝐼𝐶) metric for choosing the most information-rich measurements, and an algorithm to select 

a favourable subset of measurements as well as filtering for erroneous parameters, are proposed in this work to improve 

the PE problem performance. The resulting low-variance PE (lv-PE) algorithm yields parameter estimates which are 

closer to the true parameter values over many RTO periods. The proposed scheme is tested against a regular RTO/PE 

on a forced circulation evaporator and the Williams-Otto CSTR. The former case displays the effect of the proposed 

scheme in avoiding constraint violations, while the latter case shows the economic improvements that the proposed 

scheme can yield. Both case studies show a reduction in estimate variability with respect to the traditional PE 

approach, thus the proposed framework is attractive for the optimization of noisy process systems. 
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1. Introduction 

The economic operation of systems is of paramount importance in the chemical and process industries, which are 

becoming increasingly market-driven and competitive. To this end, model-based economic optimization has been an 

active field within the process systems engineering community in recent years. Chiefly among these methods is Real-

Time Optimization (RTO [1]), which has been deployed in a variety of applications: e.g., a laboratory-scale flotation 

column [2], a pilot-scale carbon capture system [3, 4], as well as a hydrogen production network [5]. RTO uses a 

steady-state process model as well as an economic model to determine the optimal operating point for the plant while 

addressing model uncertainty. These operating points are passed as set points to a control layer, which dynamically 

steers the plant towards the economic optimum.  

While RTO typically employs detailed models that are a suitable reflection of the plant behaviour, often those models 

are subject to uncertainty, which can cause erroneous operating points that lead to economic suboptimality and 

constraint violations when implemented in the plant. Differences between the model and plant result in suboptimal 

plant economics as the model being optimized may not be fully equivalent with the plant it represents. The 

uncertainties present in RTO problems that cause these suboptimalities can be either structural (i.e., the model does 

not fully account for the phenomena occurring in the plant) or parametric (i.e., the model contains parameters that are 

not known precisely and/or may change over time) [6]. While structural model uncertainty in RTO is also an active 

research area [7, 8], parametric uncertainty is of interest in the present study.  

To mitigate the effects of parametric uncertainty and arrive near the “true” economic optimum (i.e., the optimum that 

corresponds to the plant), a Parameter Estimation (PE) step is typically implemented alongside the economic 

optimization step in RTO via the so-called two-step approach. The PE step uses steady-state process information (i.e., 

historical data on the steady-state measurements and manipulated variables) to perform a least squares optimization 

problem, whereby the difference between measurements and the steady-state process model predictions are minimized 

with the uncertain parameters as the decision variables [9]. These updated parameters are subsequently supplied to the 

RTO problem and can be also supplied to the controller (e.g., in a model-based control scheme that uses a dynamic 

version of the RTO model). Once a new set point is achieved, the PE step is repeated as new steady-state data becomes 

available. Thus, the procedure of executing PE and RTO is performed periodically such that the plant and the model 

are constantly being reconciled through the model parameters. This overall scheme is closed loop since the RTO set 

points are passed to a regulatory controller, which acts on the plant, whereby plant measurements are supplied to the 

PE problem and the controller. Note that the associated problem of identifying whether steady state has been reached 

(known as steady state identification (SSI, [10])) is also a part of many RTO schemes. While SSI can be used to 

indicate when it is appropriate to begin collecting steady-state measurements, it does not otherwise interact with the 

PE and RTO in parameter estimation or set point generation, respectively; thus, its deployment is often omitted in the 

context of RTO for simplicity. 

Issues arising from the use of experimental measurements often arise in practice, which could lead to performance 

loss in downstream operating layers. For instance, systematic measurement errors caused by instrumentation 

miscalibration or faults can occur and lead to poor estimation, monitoring, and control performance. To address this, 

gross error detection (GED) methods have been proposed in the literature, e.g., hypothesis testing [11], error bounds 
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[12], mixed integer programming [13], and maximum a posteriori estimation [14]. In the presence of faults, the 

deployment of GED in the context of PE/RTO will ensure that estimated parameters and set points are consistent with 

the plant thereby preventing erroneous operating points.  

In addition to gross error, random error is also present and difficult to eliminate from industrial systems. This type of 

error occurs as measurements are subject to fluctuations obeying an underlying statistical distribution that causes 

imprecision [15]. In the context of RTO, variations in the set point produced by the RTO owed to noisy parameter 

estimates can occur [16]; these are caused by noisy plant measurements that lead to ill-conditioning in the PE problem 

and propagation of noise into the estimates. This set point imprecision is detrimental to the process economics as the 

effect of deviating from the true optimum may accrue substantially many RTO iterations. Moreover, fluctuating set 

points also impose undue burden on the process control layer, which is preferably avoided. To address the 

accuracy/precisions of RTO set points, a variety of approaches have been proposed in the literature.  

A probability constrained approach has been proposed [17] to incorporate uncertain economics and constraints into a 

robust RTO formulation. However, robust approaches such as this sacrifice performance to find a solution that works 

well regardless of the true parameter realization. Other authors [18], have developed statistical approaches to decide 

when set point should be changed to avoid transients caused by insignificant parameter/disturbance changes. These 

use hypothesis testing and only perform model and set point updates upon the occurrence of significant changes in 

operating point; however, this does not address the root issue of noisy measurements and only avoids frequent 

unnecessary unwarranted set point fluctuations. Data reconciliation (DR), which makes experimental data consistent 

with the process model [11-15], can also be employed to improve two-step RTO performance such that the 

measurement and parameter estimates are consistent with the RTO model and constraints; this may have some noise-

filtering effects, thus reducing variability. However, the main issue being addressed in DR is measurement/model 

consistency, not random error, and any effect that it has on random error may be an ancillary benefit. Increasingly, 

joint parameter and state estimation has been investigated along with the use of dynamic data to improve RTO 

performance by increasing execution frequency. A recent work [19] performed dynamic estimation whereby the set 

of estimated variables changed depending on the operating conditions; other contributions [20-22] have coupled 

dynamic parameter estimation with steady-state economic optimization to achieve increased RTO frequency. 

Nevertheless, the issue of noise propagation can persist in joint parameter and state estimation if not addressed. Lastly, 

robust estimators [11, 13, 15] have been proposed for GED, DR, and PE in chemical systems. These broadly aim to 

reduce the effects of outliers on parameter estimates by reformulation of the respective optimization problems (e.g., 

log-likelihood objectives); however, their effect on RTO has not been previously studied. 

In general, the methods listed above require the implementation of new process layers [12, 19, 20] (e.g., Kalman filter 

or MHE) to generate outputs to the existing PE and RTO, thus further complicating an already stratified and intensive 

two-step approach. Other methods require sensitivity information [18, 19], which is difficult to estimate in practice as 

it requires system perturbations; this is particularly difficult in the presence of significant noise. The additional 

complexity proposed by these methods may be undesirable in an industrial setting as operators are reticent to 

implement convoluted operating schemes. Moreover, no method in the literature (i.e., [11-22]) aims to abate the effect 
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of random error explicitly in the context of RTO. This leaves a gap for a scheme that directly targets the effect of 

random error owed process noise in the two-layer RTO scheme. 

To the authors’ knowledge, a scheme to abate the effect of noise directly in parameter estimates in RTO has not been 

proposed in the literature. The present study introduces a low-variance PE (lv-PE) algorithm coupled with RTO for 

the economic operation of noisy processes. The lv-PE scheme reduces the error in parameter estimates with a twofold 

strategy. Firstly, the available measurements are probed for their information content to ensure low parameter 

variability (i.e., high precision) by performing “challenger” PE problems with different measurement combinations; 

this ensures that most of the information-rich measurements are used for PE. Secondly, a filter is introduced to reduce 

the frequency of high-error estimates by establishing parameter bounds; this prevents estimates beyond realistic 

bounds to be implemented in the system. Using the measurement-probing and data-filtering steps, the proposed 

method results in low measurement-to-parameter noise propagation and elimination of high-error estimates. The 

deployment of the proposed method does not entail a fundamental redesign of the two-layer RTO scheme that is 

prevalent in industry; this makes it an attractive way to augment RTO performance in any system that uses the two-

layer approach. As will be shown in the following sections, the method only requires additional computations to be 

performed using the recurrently sampled measurements which would be collected nonetheless. Notably, this approach 

is not mutually exclusive with any aforementioned technique (i.e., GED, DR, robust estimation) since it chooses 

favourable measurements (pre-estimation) and filters noise from the resulting estimates (post-estimation). The 

proposed method can be used to improve the efficacy of robust estimators in noisy conditions and be included as an 

extra data-processing step with data reconciliation, gross error detection, or any online estimation task (e.g., state 

estimation). 

The study is structured as follows: preliminary notation and standard definitions are defined at the outset; section 2 

outlines the regular formulations for RTO, PE, and nonlinear model predictive control (NMPC) to expound on the 

arising issues with PE and provide context for the proposed algorithm. Section 3 presents, and rigorously motivates 

the proposed algorithm, also providing frameworks to analyze process economics and constraint violations in RTO-

operated systems. Section 4 illustrates the implementation of the proposed algorithm through two case studies: an 

evaporator process and the Williams-Otto process. Section 5 summarizes the findings and provides areas of future 

work. 

Preliminaries 

Bolded letters denote matrices and vectors, while plain letter done scalars. Lower-case bolded letters denote vectors, 

while upper-case bolded letters denote matrices. 𝑰!! ∈ ℝ
!!×!! denotes an identity matrix of dimensions 𝑛# × 𝑛#. 

𝑰!!:% ∈ ℝ
!!×(!!'()  denotes a matrix composed of the identity matrix of dimensions 𝑖 × 𝑖 with a zero vector of length 

𝑖 inserted as column 𝑗, e.g.: 

𝑰*:* = +
1 0 0 0
0 1 0 0
0 0 0 1

. (1)  

Given a generic vector 𝒙 = [𝑥( ⋯ 𝑥!]𝑻, some operations on the vector are defined. ‖𝒙‖𝑨
- denotes a quadratic 

form on the vector 𝒙 ∈ ℝ!" with the weighting matrix 𝑨 ∈ ℝ!"×!". 𝒙6 ∈ ℝ!" denotes model prediction of 𝒙 ∈ ℝ!". 

Model predictions are not inputs to the model nor the decision variables; rather, they are generated while solving 
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optimization problems but not conveyed to any other layers unless explicitly stated. {𝒙𝒕/𝒊}#123  denotes a discrete 

sequence of the vector 𝒙 from the present time 𝑡 to time 𝑡 − 𝑁. 𝒙< ∈ ℝ!# denotes the average of the sequence and 𝝈𝒙 

denotes the standard deviation of that sequence, i.e.: 

𝒙< =
1
𝑁 > 𝒙𝒕'𝒊

2

#1/3

 (2)  

𝝈𝒙 = ?∑ (𝒙𝒕'𝒊 − 𝒙<)-2
#1/3

𝑁 − 1  (3)  

Similarly, the covariances of elements within the vector 𝒙 given their discrete sequence {𝒙𝒕/𝒊}#123  is estimated as 

follows: 

𝐾#,% =
1
𝑁>(𝑥#,6/7 − 𝑥̅#)(𝑥%,6/7 − 𝑥̅%)

3

712

		∀𝑖 ∈ {1,… , 𝑛8}, ∀𝑗 ∈ {1,… , 𝑛8} (4)  

The latter expression can be used to construct the covariance matrix 𝑲𝒙 ∈ ℝ!"×!". Lastly, this study uses 𝑈𝑆$ as the 

monetary basis. 

2. Real-time optimization for controlled plants 

 
Figure 1: Typical RTO scheme for a controlled plant with a) independent optimization and control models, b) equivalent 
optimization and control models. 

Figure 1 depicts the exchange of information between the plant, RTO, PE, and controller via the two-step approach. 

Herein, a continuous plant is assumed to be subject to measurable disturbances (𝒅 ∈ ℝ!$). Note that this assumption 

is made for simplicity (i.e., measurability is not necessary for the proposed method as will be discussed later in this 

section). Measurements (𝒛 ∈ ℝ!%) can be acquired from the plant such that enough new data is collected to perform 

the PE problem at every RTO period Δ𝑇. The PE problem supplies the RTO economic optimization problem with 

updated model parameters (𝜽 ∈ ℝ!&) which, in turn, supplies the controller with set points (𝒚𝒔𝒑 ∈ ℝ!'). Note that 𝒚 

denotes the controlled variables that are regulated towards their respective set points (𝒚𝒔𝒑). The controller regulates 

the plant towards the RTO-supplied set points at every sampling interval Δ𝑡 such that the plant is kept on target. Note 

that Δ𝑇 = 𝑘Δ𝑡 where 𝑘 ∈ ℤ' (i.e., the RTO period is a positive integer multiple of the sampling interval), and typically 

Δ𝑇 ≫ Δ𝑡. Moreover, while state accessibility is often an issue in process plants (e.g., [4]), we assume that the required 

measurements are accessible for the purposes of this work (i.e., full state access is considered); this is not necessary 

for the scheme but done for simplicity and to remove confounding factors. 

PE

RTO Plant

Measurements: 𝒛

Parameters: 𝜽

Set points: 𝒚𝒔𝒑

Controller
Control actions: 𝒖

Disturbances: 𝒅

a)

𝑡 ← 𝑡 + ∆𝑡𝑡 ← 𝑡 + ∆𝑇 PE

RTO Plant

Measurements: 𝒛

Parameters: 𝜽

Set points: 𝒚𝒔𝒑

NMPC
Control actions: 𝒖

Disturbances: 𝒅

b)

𝑡 ← 𝑡 + ∆𝑡𝑡 ← 𝑡 + ∆𝑇
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Two controller implementations are possible as depicted in Figure 1, a) when the controller uses an individual internal 

model/scheme and, b) when the RTO, PE, and controller models are equivalent (i.e., they use dynamic and steady 

state versions of the same model). The latter case is of primary interest as parameter updates are passed to both RTO 

and controller, thus affecting the scheme’s performance in a twofold manner. For the purposes of this study, the 

parameter estimates are passed to both layers; however, they need only be passed to the RTO or NMPC layers to affect 

the system operation. Indeed, in larger systems where the online mechanistic control problem is expensive to compute, 

the use of a mechanistic MPC may be impractical such that the controller will be incompatible with PE. The use of 

equivalent models often necessitates that the controller uses detailed process models to match the PE and RTO layers, 

which are typically nonlinear, hence the use of nonlinear model predictive control (NMPC), as depicted in Figure 1b. 

The NMPCs employed herein use a dynamic version of the steady-state model deployed in the RTO and PE. Indeed, 

the interaction between NMPC and RTO has been studied previously [23, 24]; to the authors’ knowledge, studies 

addressing a reduction of parameter variability owed to measurement noise are not available in the literature. 

Generally, RTO problems are formulated as follows: 

min
𝒚
𝛷  

𝑠. 𝑡. 
𝒇𝒔(𝒙6, 𝒚, 𝒖, 𝒅, 𝜽) = 𝟎 
𝒈𝒔(𝒙6, 𝒖, 𝒅) ≤ 𝟎 
𝒚𝒍 ≤ 𝒚 ≤ 𝒚𝒉		 
𝒖𝒍 ≤ 𝒖 ≤ 𝒖𝒉		 

(5)  

where 𝛷 ∈ ℝ denotes the economic model for which the process is optimized. In formulation (5), it is assumed that 

𝛷 is an economic loss function being minimized; however, maximization of a revenue function also occurs. The inputs 

to the RTO formulation (5) are the current process disturbances (𝒅) and the uncertain model parameters (𝜽), while the 

outputs are the economically optimal controlled variables (𝒚 ∈ ℝ!'). The process state predictions (𝒙6 ∈ ℝ!") and the 

manipulated variables (𝒖 ∈ ℝ!() corresponding to the optimal set points are also generated by the model. 

𝒇𝒔: ℝ!( ×ℝ!$ ×ℝ!& ⟶ℝ!" ×ℝ!' denotes the steady-state process model. 𝒚𝒍 and 𝒚𝒉 ∈ ℝ!' are lower and upper 

bounds for the set points, respectively, while 𝒖𝒍 and 𝒖𝒉 ∈ ℝ!( are lower and upper bounds, respectively, for the 

manipulated variables. 𝒈𝒔: ℝ!" ×ℝ!( ×ℝ!$ ⟶ℝ!) are any constraints (aside from those on the inputs and set 

points) to which the economic optimum must adhere. The RTO supplies the controlled variable set points to the 

controller (i.e., 𝒚𝒔𝒑). Although the RTO may provide a set point that is challenging to match by the controller because 

of model uncertainty in both layers, the set point is nonetheless conveyed between the layers as it approximates the 

economic optimum (with some error); this point is described in the following section. Executing the RTO (and 

corresponding PE) problem too frequently would put undue computational burden on the plant and may not necessarily 

lead to drastic improvement in performance. Accordingly, the RTO problem is executed every RTO period Δ𝑇 as 

specified by the user, such that the set point is periodically being updated as more plant data becomes available. In 

contrast, the controller acts on the plant at every sampling interval Δ𝑡. 

The controller is tasked with regulating the controlled variables towards the RTO-defined set points. In the case of an 

equivalent model between layers (Figure 1b) an NMPC can be considered. NMPC (or MPC more generally) takes 

plant state measurements or estimates at every sampling interval Δ𝑡 and uses them as initial conditions for a process 
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model to predict plant behaviour on the horizon 𝑃. The manipulated variables are used as decision variables on the 

horizon 𝐶 such that the NMPC generates the sequence d𝒖𝒕'𝒋e%1(
?

 (𝐶 ≤ 𝑃 such that 𝒖 is assumed to remain constant 

beyond 𝐶). The first instance of manipulated variables from this sequence 𝒖𝒕'𝟏 are subsequently provided to the plant 

such that the system is controlled. The NMPC problem is formulated as follows: 

min
𝒖𝒕+𝒋∀%∈{(,…,?}

>f𝒚𝒔𝒑 − 𝒚6𝒕'𝒊f𝑸
-

H

#1(

+>f∆𝒖𝒕'𝒋f𝑹
-

?

%1(

 

𝑠. 𝑡. 
𝒇𝒅i𝒙6𝒕'𝒊, 𝒚6𝒕'𝒊, 𝒖𝒕'𝒋, 𝒅𝒕'𝒊, 𝜽j = 𝒙6𝒕'𝒊'𝟏																																																																	∀𝑖 ∈ {1,… , 𝑃 − 1}	∀𝑗 ∈ {1,… , 𝐶} 
𝒙𝒕 = 𝒙𝟎 
𝒈𝒅i𝒙6𝒕'𝒊, 𝒖𝒕'𝒋, 𝒅𝒕'𝒊j ≤ 𝟎																																																																																															∀𝑖 ∈ {1,… , 𝑃}	∀𝑗 ∈ {1,… , 𝐶} 
𝒚𝒍 ≤ 𝒚6𝒕'𝒊 ≤ 𝒚𝒉																																																																																																																																											∀𝑖 ∈ {1,… , 𝑃} 
𝒖𝒍 ≤ 𝒖𝒕'𝒋 ≤ 𝒖𝒉																																																																																																																																										∀𝑗 ∈ {1,… , 𝐶} 

(6)  

where all variables are defined as in the RTO with an additional dependence on time. The first term of the objective 

function represents a minimization of the sum of squared errors between the controlled variables and their set points 

over the horizon 𝑃, while the second term minimizes the squared changes in the manipulated variables from one time 

period to the next (i.e.,	 ∆𝒖𝒕'𝒋'𝟏 = 𝒖𝒕'𝒋'𝟏 − 𝒖𝒕'𝒋	∀𝑗 ∈ {1,… , 𝐶}). These objective function terms affect control 

performance and manipulated variable speed, and are subject to the diagonal weighting matrices 𝑸 ∈ ℝ!'×!' and 

𝑹 ∈ ℝ!(×!(, respectively, which are determined from prior tuning. 𝒇𝒅: ℝ!( ×ℝ!$ ×ℝ!& ⟶ℝ!" ×ℝ!' 	denotes the 

dynamic process model. 𝒈𝒅: ℝ!" ×ℝ!( ×ℝ!$ ⟶ℝ!) are the set of inequality constraints (aside from the controlled 

and manipulated variable constraints) that are imposed on the predicted trajectories. The inputs to the NMPC dynamic 

optimization problem are the initial conditions 𝒙𝟎 ∈ ℝ!", which are state measurements or estimates; as well as the 

disturbance trajectories (𝒅𝒕 = ⋯ = 𝒅𝒕'𝑷) and the model parameters (𝜽), which are assumed to remain constant at the 

latest disturbance and PE-defined value for the entire controller prediction horizon, respectively. The outputs of this 

problem are the optimal manipulated variable trajectory (𝒖𝒕'𝒋 ∈ ℝ!() as well as the predicted state (𝒙6𝒕'𝒊 ∈ ℝ!") and 

controlled variable trajectories (𝒚6𝒕'𝒊 ∈ ℝ!'). Only the first time-instance of the manipulated variables trajectory (i.e., 

𝒖𝒕'𝟏) is implemented in the plant. After this, the plant is operated for a sampling interval Δ𝑡 whereby new 

measurements are given to the NMPC as feedback and the formulation in equation (6) is re-solved; therefore, the 

process of sampling and solving the NMPC problem is repeated recursively, and the scheme becomes closed-loop. 

The uncertain model parameters (𝜽) associated with formulations (5) and (6) must be estimated prior to every 

execution of the RTO problem (5) to reconcile the plant model with the current steady state operating conditions. The 

PE optimization problem is based on Bayesian inference, which allows for the embedding of prior information and 

determination of weighting terms in a statistically rigorous manner. This assumes that measurements (and thus the 

noise associated with measurements) obey a Gaussian distribution; the complete outline of the probabilistic 

interpretation can be found elsewhere [9]. As such, the work herein is limited to Gaussian noise, which is indeed a 

very common assumption in process systems. 
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The PE problem uses a measurement sequence {𝒛𝒕/𝒊}#12M , whereby the past 𝑀 steady-state samples are considered. 

This allows for averaged measurements (𝒛n ∈ ℝ!%) to be computed using equation (2) along with the measurement 

covariance matrix (𝑲 ∈ ℝ!%×!%) using equation (4). The PE problem is as follows: 

min
𝜽
‖𝒛o − 𝒛n‖𝑲-.

- 

𝑠. 𝑡. 
𝒇𝒔i𝒙6, 𝒚6, 𝒖<, 𝒅<, 𝜽j = 𝟎 
𝒉𝒔i𝒙6, 𝒖<, 𝒅<j = 𝒛o 
𝒈𝒔i𝒙6, 𝒖<, 𝒅<j ≤ 𝟎 
𝜽𝒍 ≤ 𝜽 ≤ 𝜽𝒉		 

(7)  

𝒇𝒔: ℝ!( ×ℝ!$ ×ℝ!& ⟶ℝ!" ×ℝ!' is the steady-state process model that also corresponds to the model used in 

formulation (5).	 𝜽𝒍 and 𝜽𝒉 ∈ ℝ!𝜽 are lower and upper bounds, respectively, for the parameter estimates. 

𝒈𝒔: ℝ!" ×ℝ!( ×ℝ!$ ⟶ℝ!) are any constraints (aside from those on the inputs and set points) to which the 

estimates must adhere. Moreover, 𝒉𝒔: ℝ!" ×ℝ!( ×ℝ!$ ⟶ℝ!% denotes the function between the model inputs and 

measurement prediction. The measurements can coincide with the states or be functions of the model inputs/states. 

The objective function in problem (7) minimizes the differences between the model measurement predictions and the 

sample-averaged measurements by using the model parameters as the decision variables. The inverse covariance 

matrix (𝑲/() weights the objective function such that high-variance measurements are assigned low weights with the 

converse occurring for low-variance measurements. By performing the sampling and averaging, less noisy 

reconciliation between plant and model are achieved; however, some noise will still propagate to the parameter 

estimates as experimental data are used. In executing this formulation, the plant and model are reconciled for current 

operating conditions as the latest available steady-state plant data including the measurements, manipulated variables, 

and disturbances are used. As such, the inputs to this problem are the averaged measurements (𝒛n), averaged 

manipulated variables (𝒖<), and disturbances (𝒅<) while the outputs are the parameter estimates (𝜽). While a large 𝑀 

would be preferable for its averaging effect (especially in the presence of noise), this can lead to the use of 

measurements that are not truly at steady state (e.g., owing to drift or subtle control actions over time); thus, the size 

of 𝑀	is typically limited. Note that this formulation can also be adapted for disturbance estimation or joint 

parameter/disturbance estimation; however, this work is restricted to cases involving parameter estimation. 

As both RTO and NMPC layers are privy to the parameter estimates, poor PE performance can lead to suboptimal 

operation via inaccurate RTO set points and set point offset in the NMPC layer when compared to the true optimum. 

Given the formulations presented above, the importance of the PE problem becomes clear from the dependence of the 

RTO and NMPC on 𝜽. Moreover, the gaps for a method to deal with variation in parameter estimates can be expounded 

upon: 

1) More information (i.e., measurements) do not necessarily mean that the PE problem (7) will yield better 

estimates as covariances (𝑲) may, in fact, weigh the problem unevenly such that it becomes ill-conditioned. 

Typically, all available measurements (𝒛) are used when solving PE problems; accordingly, there is need for 

a method that can choose a favourable subset of measurements to provide to the PE step. 
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2) Problem (7) uses a sample of measurements ({𝒛𝒕/𝒊}#12M ), which are subject to noise through the sample 

average 𝒛n and the covariance matrix 𝑲. The propagation of noise from the measurements to the parameter 

estimates can cause economic losses, which accrue in the long-term. There remains a gap for a method to 

ensure this does not occur by filtering for erroneous estimates. 

To address these issues, the low-variance PE procedure is introduced herein and presented in the following section. 

This comprises an algorithm that determines favourable measurements to embed in the PE problem as well as a filter 

to reject instances where the parameters are poorly estimated. 

3. Low-variance parameter estimation (lv-PE) 

The proposed low-variance PE (i.e., lv-PE) scheme works by reducing the variability in parameter estimates with 

respect to their expected value, which is equivalent to their true value provided that the system is absent of systematic 

errors (see assumption 3 below).  Accordingly, any single estimate may not be more accurate at a given PE/RTO 

iteration; however, the estimates over time will be more precise, thus benefits will accrue over many RTO periods. In 

this section, the scheme is motivated through analysis of the set point error, which is attributed to parameter error. 

Then, the algorithm comprising the scheme is discussed step-by-step. Moreover, the economic implications of the 

method are discussed, with a novel algebraic and geometric interpretation of RTO economics. Assessment metrics for 

the scheme are introduced at the end of this section.  

The following assumptions are made herein: 

1) The time operating at steady state far exceeds the time operating dynamically. This is an underlying 

assumption in systems that operate with RTO [1] (i.e., not specific to the proposed approach) as the principle 

of steady-state optimization is that cost-optimal operating policy is steady while dynamic operation is 

expensive and should be minimized. 

2) The measurement noise is additive Gaussian and occurs owing to random errors. As noted earlier, this is an 

underlying assumption of standard PE in equation (7) as the least-squares objective embedded with prior 

measurements arises from Bayesian inference in the presence of Gaussian noise [9]. 

3) Plant-model mismatch is owed to PE error. This is a standard assumption in the two-layer RTO [1] whereby 

a mechanistic model is assumed to provide an adequate representation of the system and only requires 

parameter estimates to match the plant. Mechanistic process models are increasingly common and available 

for RTO; however, in cases where such model is not available, other approaches [7,8] can be considered. The 

PE error herein is owed to large noises to which the measurements are subjected. Measurement bias and 

similar systematic errors are not addressed herein as they would require GED. In principle, GED could also 

be addressed within the proposed scheme but would require an extra processing layer as indicated in the 

introduction. However, as this is the first study to use the proposed approach, extra layers were not considered 

to explicitly assess the benefits and limitations of the method. 

3.1. Effect of parameters error on set point tracking 

A theoretical argument is first made to motivate the proposed approach, which connects parameter error to set point 

error for an RTO-operated system. Consider a single RTO period during which the process loss is minimized 

(alternatively, revenue can be maximized). For a constrained RTO to operate the process at its “true” economic 
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optimum (i.e., the economic optimum corresponding to the plant, not the mismatched model) the controlled variables 

must fulfill the Karush-Kuhn-Tucker (KKT) conditions, i.e.: 

∇Φi𝒚𝒔𝒑𝒕𝒓𝒖𝒆j + 𝑱𝒇i𝒚𝒔𝒑𝒕𝒓𝒖𝒆j
S𝝀 + 𝑱𝒈i𝒚𝒔𝒑𝒕𝒓𝒖𝒆j

S𝝁 = 𝟎 

𝒇i𝒚𝒔𝒑𝒕𝒓𝒖𝒆j = 𝟎 

𝒈i𝒚𝒔𝒑𝒕𝒓𝒖𝒆j = 𝟎 

𝝁S𝒈i𝒚𝒔𝒑𝒕𝒓𝒖𝒆j = 0; 𝝁 ≥ 𝟎 

(8)  

where 𝑱𝒇 ∈ ℝ!"×!' and 𝝀 ∈ ℝ!" are the Jacobian matrix and KKT multipliers of the process model, respectively. 

Moreover 𝑱𝒈 ∈ ℝ!)×!' and 𝝀 ∈ ℝ!) are the Jacobian matrix and KKT multipliers of the process constraints, 

respectively. 𝒚𝒔𝒑𝒕𝒓𝒖𝒆 ∈ ℝ!' in equation (8) denotes the controlled variables set points that achieve a true economic 

optimum (i.e., plant KKT conditions). In practice, the true economic optimum 𝒚𝒔𝒑𝒕𝒓𝒖𝒆 is difficult to achieve because of 

mismatch between the plant and RTO model. As such, the performance of an RTO optimizer can be assessed by the 

difference between the actual controlled variables achieved by the system and the true set points. Over time, this can 

be quantified using an error metric; herein the integral square error (𝐼𝑆𝐸) is considered owed to its common use in 

control systems. Accordingly, the error is quantified over the single RTO operating period (𝑇USV = ∆𝑇): 

𝐼𝑆𝐸 = x f𝒚𝑹𝑻𝑶 − 𝒚𝒔𝒑𝒕𝒓𝒖𝒆f𝑰0'
-S123

2
𝑑𝑡 (9)  

where 𝒚𝑹𝑻𝑶 ∈ ℝ!' denotes the actual controlled variables achieved by the RTO-operated system. 𝒚𝒔𝒑𝒕𝒓𝒖𝒆 and 𝒚𝑹𝑻𝑶 are 

distinct as the RTO may not operate the system at the theoretical optimum owing to modelling errors, thus the gap 

between the achieved set point and the true optimum is expressed by the error metric in equation (9). The set point 

offsets in equation (9) provide a way to analyze the efficacy of an RTO-operated system on a theoretical basis. As 

values of 𝒚𝑹𝑻𝑶 are not known a priori, the effect of offset is analyzed under several hypothetical scenarios as shown 

next. 

The operation of process plants is composed of many RTO periods; however, taking a more granular view as done 

here, a single RTO operating period can be segmented into distinct phases: the suboptimal phase, the dynamic phase, 

and the optimal phase; these are depicted in Figure 2. The suboptimal phase corresponds to the time before the RTO 

is executed and the system is operating at a point that is outdated/suboptimal (𝒚𝒔𝒖𝒃 ∈ ℝ!'), the dynamic phase occurs 

once the RTO has been executed and the system is in a transient state (𝒚𝒅𝒚𝒏 ∈ ℝ!'), and the optimal phase occurs 

once the system is operating at its RTO-defined set point (𝒚𝒐𝒑𝒕 ∈ ℝ!'). Note that the “optimal phase” here 

corresponding to 𝒚𝒐𝒑𝒕 refers to optimal as achieved by the PE/RTO-operated system and may, in fact, not be the true 

plant optimum 𝒚𝒔𝒑𝒕𝒓𝒖𝒆 as the RTO can result in offset with respect to the true set point as show in equation (9). The 

segmentation of the RTO period into three phases allows for 𝒚𝑹𝑻𝑶 as defined previously to be decomposed into 𝒚𝒔𝒖𝒃, 

𝒚𝒅𝒚𝒏,	and		𝒚𝒐𝒑𝒕.	These phases have durations 𝑡\]^,	𝑡_`!, and 𝑡ab6, such that for a single RTO period 𝑇USV = 𝑡\]^ +

𝑡_`! + 𝑡ab6.  
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Figure 2: Segmentation of RTO period. Dotted (--) line denotes the true (theoretical) optimum. The integral of differences between 
true optimum and actual phase values highlighted red (suboptimal phase), green (dynamic phase), and blue (optimal phase). 

This allows for equation (9) to be segmented into phases, for which the set point difference in each phase is shown in  

Figure 2 as follows: 

𝐼𝑆𝐸 = x f𝒚𝒔𝒖𝒃 − 𝒚𝒔𝒑𝒕𝒓𝒖𝒆f𝑰0'
-𝑑𝑡

64(5

2

+ x f𝒚𝒅𝒚𝒏 − 𝒚𝒔𝒑𝒕𝒓𝒖𝒆f𝑰0'
-𝑑𝑡

6$'0'64(5

64(5

+ x f𝒚𝒐𝒑𝒕 − 𝒚𝒔𝒑𝒕𝒓𝒖𝒆f𝑰0'
-𝑑𝑡

64(5'6$'0'6678

64(5'6$'0

 (10)  

Since RTO is inherently a steady state method, assumption 1 outlined above is made; indeed, predominantly steady 

state operation is largely the case for many process plants. This leads to 𝑡\]^ , 𝑡ab6 ≫ 𝑡_`! ⟹ 𝑇USV ≅ 𝑡\]^ + 𝑡ab6, thus 

simplifying equation (10) to: 

𝐼𝑆𝐸 = x f𝒚𝒔𝒖𝒃 − 𝒚𝒔𝒑𝒕𝒓𝒖𝒆f𝑰0'
-𝑑𝑡

64(5

2

+ x f𝒚𝒐𝒑𝒕 − 𝒚𝒔𝒑𝒕𝒓𝒖𝒆f𝑰0'
-𝑑𝑡

64(5'6678

64(5

 (11)  

The RTO-defined controlled variables can be partitioned into the true value (as defined above) and their deviation 

from the true value (𝝈 ∈ ℝ!' ), which allows for the expansion into: 

𝐼𝑆𝐸 = x f𝒚𝒔𝒑𝒕𝒓𝒖𝒆 + 𝝈𝒔𝒖𝒃 − 𝒚𝒔𝒑𝒕𝒓𝒖𝒆f𝑰0'
-𝑑𝑡

64(5

2

+ x f𝒚𝒔𝒑𝒕𝒓𝒖𝒆 + 𝝈𝒐𝒑𝒕 − 𝒚𝒔𝒑𝒕𝒓𝒖𝒆f𝑰0'
-𝑑𝑡

64(5'6678

64(5

 (12)  

which simplifies to: 

𝐼𝑆𝐸 = x f𝝈𝒔𝒖𝒃f
𝑰0'

-𝑑𝑡

64(5

2

+ x ‖𝝈𝒐𝒑𝒕‖𝑰0'
-𝑑𝑡

64(5'6678

64(5

 (13)  

Moreover, as only steady state periods are being analyzed, the deviations from the true values are constant for a single 

given RTO period (i.e., not a function of time) as show geometrically in Figure 2. The solution of equation (13) 

provides a definition of the 𝐼𝑆𝐸 performance metric for RTO: 
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𝐼𝑆𝐸 = f𝝈𝒔𝒖𝒃f
𝑰0'

-𝑡\]^ + ‖𝝈𝒐𝒑𝒕‖𝑰0'
-𝑡ab6 (14)  

Using equation (14), the performance of two operating schemes can be compared: the first (𝑙𝑣), which reduces the set 

point deviation; and the second (𝑟), which is the regular RTO problem: 

𝐼𝑆𝐸cd − 𝐼𝑆𝐸e = f𝝈𝒍𝒗𝒔𝒖𝒃f𝑰0'
-𝑡\]^,cd + f𝝈𝒍𝒗

𝒐𝒑𝒕f
𝑰0'

-
𝑡ab6,cd − f𝝈𝒓𝒔𝒖𝒃f𝑰0'

-𝑡\]^,e − f𝝈𝒓
𝒐𝒑𝒕f

𝑰0'

-
𝑡ab6,e (15)  

To have an equivalent assessment of the schemes, it can be assumed that both operating schemes in equation (15) 

begin at the same suboptimum (i.e., 𝝈𝒍𝒗𝒔𝒖𝒃 = 𝝈𝒓𝒔𝒖𝒃) and can act at the same time (i.e., 𝑡\]^,cd = 𝑡\]^,e = 𝑡\]^ and 

𝑡ab6,cd = 𝑡ab6,e = 𝑡ab6,), thus: 

𝐼𝑆𝐸cd − 𝐼𝑆𝐸e = �f𝝈𝒍𝒗
𝒐𝒑𝒕f

𝑰0'

-
− f𝝈𝒓

𝒐𝒑𝒕f
𝑰0'

-
� 𝑡ab6 (16)  

Which, since 𝑡ab6 > 0 by definition, leads to: 

𝐼𝑆𝐸cd − 𝐼𝑆𝐸e < 0⟺ f𝝈𝒍𝒗
𝒐𝒑𝒕f

𝑰0'

-
< f𝝈𝒓

𝒐𝒑𝒕f
𝑰0'

-
 (17)  

Following assumption 3, it can be concluded that by reducing the error in parameter estimates (𝜽), the deviations from 

the set points are also minimized as the uncertain parameters represent the only source of plant-model mismatch, thus: 

𝐼𝑆𝐸cd − 𝐼𝑆𝐸e < 0⟺ f𝝈𝜽,𝒍𝒗
𝒐𝒑𝒕 f

𝑰0'

-
< f𝝈𝜽,𝒓

𝒐𝒑𝒕f
𝑰0'

-
 (18)  

Since the set point corresponding to 𝒚𝒔𝒑𝒕𝒓𝒖𝒆 is indeed an economic optimum by definition, the minimization of parameter 

deviations will lead to improved economics as effected through the set points. This can be generalized to multiple 

RTO periods if the deviations 𝝈 are re-defined as standard deviations, thus they represent the mean deviation across 

many RTO periods. An algorithm to achieve this lowering of parameter deviation, which fulfills the assumptions made 

herein is presented next. 

3.2. Proposed approach (lv-PE) 
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Figure 3: The proposed low-variation parameter estimation algorithm for RTO. The blue block denotes the restarting criteria for 
the measurement-probing block (in the red block). The green block denotes the parameter update procedure in the RTO and NMPC. 

The proposed algorithm to lower the variability in the parameter estimates is depicted in Figure 3 and divided into 

three blocks to facilitate discussion. The key idea is to test available measurements sequentially for whether they help 

or hinder the variability of the parameter estimates by performing “challenger” PE problems (i.e., potential PE 

formulations of which the results are not implemented in the RTO or NMPC). The parameter estimates of the 

challenger problems are compared to those of a benchmark problem, whereby the challenger problem is a version of 

the benchmark problem with an omitted measurement. If the challenger problem performs better with the omitted 

measurement, it becomes the new benchmark problem. At the first iteration of the algorithm, the benchmark problem 

contains all available measurements, this way they may all be probed as the algorithm progresses; as the progression 

occurs, each successive benchmark problem will have a lower parameter variability. The removal of measurements is 

preferable to the addition of measurements as addition will require an initial subset of fixed measurements to be chosen 

a priori. Both challenger and benchmark problems are executed several times; accordingly, data regarding the 

parameter estimates is collected to calculate their statistical parameters. These are used twofold: 1) to determine the 

combination of measurements that leads to the lowest 𝝈𝜽
𝒐𝒑𝒕; 2) as filters to discard inaccurate parameter estimates (i.e., 

those outside of the tightest ±𝝈𝜽
𝒐𝒑𝒕).  

The scheme can begin at any point in the operation of a process by going through the restart/terminate block in Figure 

3 (i.e., checking if an operating point change has occurred and if all conditions for the measurement-probing procedure 

are met). Once these conditions are met, the measurement-probing block in Figure 3 is activated (the activation 

conditions will be explained in detail at the end of this section). Upon activation, a counter is set to 𝑗 = 1 and all 

Execute 𝑀 dummy and benchmark PE 
problems

New operating 
point?

𝝈𝜽(𝜻), 𝝈𝜽(𝒛)

𝜍𝑗 > 0?

Yes, 𝑗 = 1

Execute PE problem

Update MPC parameters and execute RTO 
problem

No: retain benchmark problem
𝑗 ← 𝑗 + 1

Yes: new benchmark problem
𝒛 ∈ ℝ𝑛𝑧 ⟵ 𝜻 ∈ ℝ𝑛𝑧−1

𝑡 ← 𝑡 + ∆𝑇𝑡 ← 𝑡 + 𝑀∆𝑡

No

𝜽

𝒚𝒔𝒑

No

𝜽 − 𝝈𝜽 ≤ 𝜽 ≤ 𝜽 + 𝝈𝜽?

Yes : 𝝈𝜽, 𝒛

𝑡 ← 𝑡 + ∆𝑡

No

Yes

𝑗 = 𝑛𝑧?

𝑛𝑧 = 𝑛𝑧,𝑚𝑖𝑛 ?
Yes : 𝝈𝜽, 𝒛

No

Probe measurements (offline) Update parameters (online)

Restart/terminate (offline)

No
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measurements are assumed to be used (i.e., 𝒛𝟎 ∈ ℝ!%9  where 𝑛g = 𝑛g9). The challenger problems as shown in the 

measurement-probing block of Figure 3 and defined in formulation (19) are solved 𝑀 times over 𝑀 sampling intervals 

∆𝑡 such that each problem has a data window with a new measurement added and an old measurement discarded with 

respect to the previous problem. This process of executing	𝑀 challenger problems is performed by excluding a 

measurement from the benchmark PE problem via the formulation in equation (19). The challenger problems are 

performed offline such that their estimates are never conveyed to the other layers.  At 𝑗 = 1, the benchmark is the 

regular PE problem as defined in equation (7) with 𝒛𝟎, and it is also solved 𝑀 times over 𝑀 sampling intervals. This 

benchmark problem will change if a better formulation is found by the challenger problem, otherwise is it kept. 

The challenger PE problems are formulated as a modified PE problem where the variables are defined as in equation 

(7) except for 𝜻 ∈ ℝ!%/(.  The challenger problems are as follows: 

min
𝜽
f𝜻� − 𝜻nf

𝜿-.
-
 

𝑠. 𝑡. 
𝒇𝒔i𝒙6, 𝒚6, 𝒖<, 𝒅<, 𝜽j = 𝟎 
𝒉𝒔i𝒙6, 𝒖<, 𝒅<j = 𝒛o 
𝑰𝒏𝒛/𝟏:𝒋𝒛o = 𝜻� 
𝒈𝒔i𝒖<, 𝒅<, 𝒙6j ≤ 𝟎 
𝜽𝒍 ≤ 𝜽 ≤ 𝜽𝒉		 

(19)  

where 𝜻� excludes measurement 𝑗 from the PE problem using 𝑰𝒏𝒛/𝟏:𝒋 ∈ ℝ
(!%/()×!% such that only a subset of 

measurements 𝜻 are used with the respective covariance matrix 𝜿 ∈ ℝ(!%/()×(!%/() and averages 𝜻n = 𝑰𝒏𝒛/𝟏:𝒋	𝒛n. 

After 𝑀 executions of problem (19), the parameter sequence d𝜽(𝜻),𝒕/𝒊e#12
M

 is available, allowing for the calculation of 

the standard deviation of that sequence 𝝈𝜽(𝜻). Moreover, 𝑀 executions of a benchmark PE problem (i.e., with the full 

set of measurements 𝒛) have also been performed to obtain the sequence {𝜽(𝒛)	𝒕/𝒊}#12M  with variation benchmark 𝝈𝜽(𝒛). 

Note that 𝑀 is a system parameter and is limited by the RTO period size as it will determine the computational time 

associated with the proposed scheme along with the number of challenger problems required; more details about this 

parameter are provided in the following section. 

The information content (𝐼𝐶 ∈ ℝ) metric introduced by Vrugt, Bouten and Weerts [25] is adapted for PE as follows: 

𝐼𝐶#,7 = 1 −
𝜎l(𝜻),#,7
𝜎l(𝒛),#,7

			∀𝑖 ∈ {1,… , 𝑛l} (20)  

where 𝑘 = 𝑗 + 𝑛g9 − 𝑛g denotes the number of measurements probed hitherto. 

The 𝐼𝐶 metric in equation (20) quantifies if, and by how much, the exclusion of a measurement helps in the decrease 

of parameter variability. 𝐼𝐶#,7 > 0 implies that the removal of a measurement helps reduce variability while 𝐼𝐶#,7 < 0 

implies that the removal increases the variation. The 𝐼𝐶 metric was chosen due to its simplicity and the fact that it 

does not require plant perturbations such as alternatives metrics like the sensitivity matrix [26]. In essence, equation 

(20) determines whether each measurement is beneficial or detrimental to the expected error of the PE problem via 

parameter standard deviations. The deviations are used in evaluating a benchmark problem (i.e., with lowest variance 

set of measurements found thus far in the measurement probing phase) and a challenger problem (i.e., with a 
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potentially better set of measurements). To quantify the aggregate effect of measurement exclusion in systems with 

many parameters, the overall 𝐼𝐶 (𝜍7 ∈ ℝ) is defined as follows:  

𝜍7 =� 𝐼𝐶#,7
!&
#1( 																																																																																																																																																																 (21)  

This is depicted within the measurement-probing block of Figure 3 to determine whether to exclude or keep a 

measurement as follows: 

If 𝜍7 > 0, the exclusion of the measurement is deemed beneficial as cumulative impact of the exclusion is 

net positive across all estimated parameters in the system (i.e., the variation in some parameters may decrease while 

the variance in other may increase; however, the net effect is of decrease in variation). As such, the measurement 𝑗 

being tested is removed from the PE formulation and the challenger formulation becomes the new benchmark problem, 

thereby reducing the dimension of the measurements vector by one i.e., 

𝑛g ⟵ 𝑛g − 1⟹ 𝒛 ∈ ℝ!% ⟵ 𝜻 ∈ ℝ!%/(  

following this, the probing process then proceeds whereby the previous second measurement, which is now the first 

measurement (i.e., 𝑧( ⟵ 𝑧-), is probed for its information content. 

If 𝜍 ≤ 0, the exclusion of the measurement is not beneficial, thus the measurement is retained, and a new 

exclusion candidate is chosen i.e., 𝑗 ⟵ 𝑗 + 1. 

This process is then repeated sequentially for available measurements 𝑘 ∈ {1,… , 𝑛g9} until either of the three 

conditions in the restart/terminate block of  Figure 3 is fulfilled: 1) the operating point changes as dictated by a sudden 

disturbance to the system, thus interrupting the measurement-probing process and setting 𝑗 = 1, 2) the minimum 

number of allowable measurements are reached as specified by the user based on identifiability analysis [27] or process 

knowledge or, 3) the scheme has gone through all the available measurements and chosen only to exclude a small 

subset. The latter two conditions are reflected in the following:  

𝑛g = 𝑛g,m#! (22)  

𝑛g = 𝑗 (23)  

where 𝑛g,m#! is the minimum number of measurements required for the system to be identifiable. Condition (22) 

ensures that the minimum number of measurements needed (conversely, the maximum number of measurements that 

can be excluded) are retained. Additionally, condition (23) stops the data acquisition when all original measurements 

have been analyzed as reflected by the index 𝑘 being equivalent to the original number of measurements 𝑛g9 (and 

condition (22) has not yet been fulfilled). Condition (22) is predominant as reflected in Figure 3, whereby it is checked 

before condition (23); this is to ensure sufficient measurements always remain such that the system is identifiable. 

Once the measurement-probing block of the algorithm in Figure 3 is completed, the information-rich measurement 

vector 𝒛 is known and the filter bounds [𝜽< − 𝝈𝜽(𝒛), 𝜽< + 𝝈𝜽(𝒛)] can be calculated using the parameter sample 

{𝜽(𝒛)	𝒕/𝒊}#12M  from the final benchmark problem (i.e., the one corresponding to the subset of measurements that were 
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chosen to be used in the PE problem implemented in the RTO and NMPC). The sample of parameter estimates 

corresponding to the chosen subset of measurements is used to calculate these bounds as the standard deviation. Since 

the standard deviation is the average difference between the expected parameter value and the individual estimates 

within the sample, future estimates outside of the bounds established by the standard deviation (i.e., those with higher-

than-average distance from the expected parameter) are deemed unacceptable. This avoids potential high-error 

estimates whereby noisiness may be propagating excessively to the estimates. With this information, the PE problem 

(7) can be performed and implemented at every RTO period ∆𝑇 with the chosen subset of measurements 𝒛 as depicted 

in the update block of Figure 3. This PE problem corresponds to the one with the final 𝒛 determined by the 

measurement-probing block of the algorithm and generates the estimates 𝜽�, which are assessed with the filter bounds. 

If the estimates are outside the filter bounds, they are not accepted, and another sampling interval is taken to collect 

measurements; this process is repeated until an acceptable set of parameter estimates are generated. If the estimates 

are inside the filter bounds, the parameters are used to update the NMPC and execute the RTO problem.  

The update procedure is not repeated for another RTO period (i.e., 𝑡 ⟵ 𝑡 + ∆𝑇) unless a new operating point is 

introduced as depicted by the upper decision block in Figure 3, which restarts the measurement-probing process. When 

a sudden operating point change occurs, as indicated by a sudden large change in control actions or process economics, 

the measurement-probing block of the algorithm in Figure 3 is reactivated by the restart /terminate block. This is done 

to ensure that favourable measurements are being used for the PE problem under the new operating conditions. Note 

that ‘favourable’ measurements may not mean optimal as stopping criteria (22) may halt the algorithm before all 

measurements are probed for 𝐼𝐶. Nevertheless, the subset of ‘favourable’ measurements chosen by the proposed 

scheme will always lead to parameter estimates that are equally accurate or more accurate than the original set of 

measurements. Alternatively, the measurement-probing block can also be activated through the restart/terminate block 

if there is a sudden change occurs as the measurement probing procedure is proceeding, this is checked for after every 

new challenger problem is introduced (i.e., 𝑡 ⟵ 𝑡 +𝑀∆𝑡). 

In summary, the algorithm proceeds as follows: 

lv-PE algorithm applied to RTO: 

1.  New operating point? 

a.  Yes: activate measurement-probing block, go to step 4 

b.  No: go to step 2 

2.  𝑛g = 𝑛g,m#!? 

a.  Yes: activate parameter update block, go to step 5 

b.  No: go to step 3 

3.  𝑛g = 𝑗? 

a.  Yes: activate parameter update block, go to step 5 

b.  No: activate measurement-probing block, go to step 4 

4.  Measurement-probing, set 𝑗 = 1 

a.  Execute 𝑀 challenger and benchmark problems (19) and (7), respectively 
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i.  If 𝜍7 > 0: 𝑗 = 1, measurement excluded, new benchmark problem established, go to 

step 1 

ii.  Else: 𝑗+= 1, measurement retained, keep old benchmark problem, go to step 1 

5.  Parameter update 

a.  Execute actual PE problem 

i. If 𝜽< − 𝝈𝜽 ≤ 𝜽� ≤ 𝜽< + 𝝈𝜽: update RTO and MPC parameters, 𝑡+= ∆𝑇, return to step 1 

ii. Else: 𝑡+= ∆𝑡, return to step 5a 

It should be noted that the algorithm presented above is designed to reduce parameter variation across RTO periods, 

not to detect gross errors. However, the method could be adjusted for GED through hypothesis testing [11] of the 

parameter estimate means generated by the benchmark and challenger problems in the lv estimation algorithm. 

Accordingly, a test statistic could be used to determine whether measurement removal in the probing procedure 

generates shifting means, thus identifying gross errors. The lv-PE, as proposed herein, has two major advantages over 

the regular PE applied to RTO: firstly, the most information-rich subset of measurements is chosen to reduce parameter 

variability; secondly, the parameter filter avoids RTO periods with poorly estimated parameters. As shown in the 

previous section, this will result in lower set point error and, in turn, better process economics. Importantly, the 

information content procedure only requires sampling and can be performed offline as its solutions are not 

implemented in the system being operated. The only time at which the proposed scheme interacts with the process 

control loop is when the RTO set points are updated. Otherwise, only an additional independent computer/processor 

is necessary for repeated execution of the PE problems, which do not interfere with the regular process control loop; 

this makes the requirements for implementation relatively simple, hence its appeal of industrial systems. The 

information content procedure may be adjusted through sample sizes such that it can fully occurs within the RTO 

period; the assessment of this computational expense to the PE computer will be elaborated on in the following section.  

3.3. Scheme assessment and economic analysis 

The proposed scheme is mainly analyzed through variation, the process economics, and constraint violations; these 

are the factors that affect the PE, NMPC, and RTO problems, which the scheme aims to improve upon. The variation 

is captured through the standard deviation of parameters, the economics are calculated using the process 

revenues/losses and their rates, and the constraint violations can be quantified through their cumulative magnitude. 

As shown in section 3.1., the 𝐼𝑆𝐸 of the operation of an RTO system is linearly dependent on the operating time; thus, 

the cumulative error can be written as a linear combination of the error terms of each individual RTO period. The 

same follows for the process economics 𝑅($), where a revenue is made if 𝑅 > 0 or a loss is incurred if 𝑅 < 0. This 

occurs as the operation is a combination of constant rates 𝑃($/𝑡𝑖𝑚𝑒). 𝑃 > 0 is a profit rate and occurs when the 

operator is selling produced commodities; in contrast 𝑃 < 0 is a price rate and occurs when a process is operating at 

a loss. 

As stated previously, the RTO period consists of three phases (𝑇USV = 𝑡\]^ + 𝑡_`! + 𝑡ab6). These correspond to 

suboptimal operation before the set points are updated 𝑡\]^ (𝑡𝑖𝑚𝑒), a fast (i.e., negligible) dynamic operation, and 

RTO-optimal operation once the set points are updated  𝑡ab6	(𝑡𝑖𝑚𝑒). The respective suboptimal, dynamic, and optimal 
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process profit/cost rates are 𝑃\]^,#, 𝑃_`!,#, and 𝑃ab6,# ($/𝑡𝑖𝑚𝑒) are dependent on the specific RTO period 𝑖. This enables 

calculation of the cumulative process economics (i.e., as the process progresses), i.e.,  

𝑅 =>x 𝑃#
S123

2
𝑑𝑡

3

#12

 (24)  

Again, this can be segmented into three phases: suboptimal, dynamic, and optimal, i.e.: 

𝑅 =>x 𝑃\]^,#
64(5

2
𝑑𝑡 + x 𝑃_`!,#

64(5'6$'0

64(5
𝑑𝑡 + x 𝑃ab6,#

64(5'6$'0'6678

64(5'6$'0
𝑑𝑡

3

#12

 (25)  

As the RTO operation is inherently steady state, the dynamics are assumed to ensure quickly, thus simplifying to: 

𝑅 =>x 𝑃\]^,#
64(5

2
𝑑𝑡 + x 𝑃ab6,#

64(5'6678

64(5
𝑑𝑡

3

#12

 (26)  

Both suboptimal and optimal phases are composed of constant profit/loss rates whereby the time that is not spent 

operating optimally during the RTO period is spent operating suboptimally instead, this can be expressed as: 

𝑅 =>𝑡\]^𝑃\]^,# +
3

#12

𝑡ab6𝑃ab6,# (27)  

Substituting back the expression 𝑡ab6 = 𝑇USV − 𝑡\]^, whereby the time that is not spent operating optimally during 

the RTO period is spent operating suboptimally instead, both terms can be expressed in terms of the total RTO period 

length and the suboptimal time: 

𝑅 =>𝑡\]^𝑃\]^,# +
3

#12

(𝑇USV − 𝑡\]^)𝑃ab6,# (28)  

For a single RTO period, equation (28) could be used to build forecasting tools such as payback periods as exemplified 

in the appendix (supplementary information). If the system were not to act promptly (i.e., be delayed beyond the 

regular suboptimal time), the time operating suboptimally would be protracted, thus causing diminished economic 

performance. For instance, suppose the delay incurred at a given RTO period is 𝜏, this causes further suboptimal 

operating time expressed as: 

𝑅 =>𝑃\]^,#i𝑡\]^,# + 𝜏#j + 𝑃ab6,#i𝑇USV − 𝑡\]^,# − 𝜏#j
3

#12

 (29)  

This situation is best avoided as the 𝑇USV − 𝑡\]^,% − 𝜏# term diminishes the potential benefit of an RTO scheme over 

time. This is especially important in the lv-PE/RTO system as offline computations must be performed before set 

point updates. As a result, the computational burden, which is associated with the information content procedure must 

also be considered as to avoid the delay.  

The size of 𝑀 (i.e., the number of samples used for averaging in problems (7) and (19)) will determine whether delay 

occurs in the proposed lv-PE/RTO scheme through the information content procedure occurring in the PE computer. 

If 𝑀 is small, the estimation formulation (7) will not benefit from the smoothing of noise of a large sample size, thus 

resulting in high variance estimate. In contrast, a large 𝑀 may capture slow dynamics such as drift or, as noted above, 

computational delays in the execution of the RTO problem (5). Drift would result in high-error estimates as the data 

collected would not be dynamic, thus the steady-state estimation problem would aim to fit parameters to dynamic data 
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using a steady-state model. Computational delays would result in performance deterioration that could become 

significant if they delay persists over time as shown in equation (29). 

The time required to perform 𝑘 = 𝑗 + 𝑛g9 − 𝑛g sets of challenger problems (as shown in Figure 3), each requiring 𝑀 

samples, depends on the length of the sampling time (∆𝑡) with respect to the CPU time of each challenger problem 

(∆𝑡nopccq!rqe). Whichever time is greater limits the speed of the information content procedure, i.e., 

𝑡namb = �
𝑘𝑀∆𝑡																									𝑖𝑓								∆𝑡 > ∆𝑡nopccq!rqe
𝑘𝑀∆𝑡nopccq!rqe								𝑖𝑓								∆𝑡nopccq!rqe > ∆𝑡 (30)  

In the case studies considered in this work, 𝑀 was sized based on equation (30) such that the delayed revenue case in 

represented by equation (29) would be avoided. To do so, it is assumed that 𝑡namb ≔ ∆𝑇 such that the maximum 

allowable computational time (assuming no parallelization, which can also be considered through an integer multiple 

of equation (30)) was equal to the RTO period, as to avoid any delay. Moreover,  𝑘 ≔ 𝑛g9 was assumed such that all 

available measurements are assumed to be probed via challenger problems. The time-limiting conditions can be 

verified through preliminary PE executions, and it was found that ∆𝑡 > ∆𝑡nopccq!rqe for both case studies herein (i.e., 

the sampling period is longer than the computational time to execute a PE problem). Accordingly, the 𝑀 for each case 

study was determined by rearranging equation (30) and substituting the aforementioned definitions (≔) as follows: 

𝑀 =
∆𝑇	
∆𝑡𝑛g9

 (31)  

such that RTO delays are avoided. 

Furthermore, the proposed scheme also helps to avoiding constraint violations. To quantify this effect, the sum of 

absolute constraint violations is considered, i.e., 

𝑆𝐴𝑉 =>�𝑔bcp!6,6 − 𝑔�

S;

612

 (32)  

where 𝑇s(𝑡𝑖𝑚𝑒) is the total time for which the system is operated while 𝑔bcp!6,6 and 𝑔 are the actual (measured) and 

bound values for the constraints being violated, respectively. The absolute sum is used as it gives a good physical 

sense of the amount by which the constraint is being exceeded cumulatively over time. 𝑆𝐴𝑉 preferred to an alternative 

metric like sum of squares, which also quantifies the violation but does not correspond to an actual plant quantity 

because of the squaring. 

4. Case studies 

The proposed scheme was tested for updating the RTO and NMPC parameters as depicted in Figure 1b with matching 

optimization and control models (however, they need only be passed to one of these layers to influence the process 

operation). Two simulated case studies are performed: a forced circulation evaporator [28] case exemplifies the benefit 

of avoiding constraint violations and the Williams-Otto CSTR [29] shows the economic benefit of the lv-PE/RTO 

scheme. Each case study is tested under different parameter realizations (i.e., where the plant manifests distinct 

parameter values/combinations) whereby both regular PE and lv-PE schemes must repeatedly estimate the parameters 

to feed to the RTO and NMPC. The initial conditions (i.e., at 𝑇 = 0, 𝑡 = 0) for all scenarios within each case study 

correspond to the optimal operating point given by the nominal parameter(s). Note that this is only the starting point, 
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and each scheme then proceeds to pursue the true optimum corresponding to the actual parameters for a given scenario. 

A consistent starting point for both PE/RTO schemes (i.e., the regular and low-variance) and across all scenarios 

ensures comparability in the dynamic domain such that no scheme/scenario starts at a more advantageous point. As a 

result, the plant is assumed to have arrived at a new operating point in both case studies, thus progressing through the 

restart/terminate block in Figure 3, and triggering the measurement-probing block. Both case studies assume full state 

accessibility as to not confound the performance of the proposed method with the performance of a potential state 

estimator. Nevertheless, many industrial systems require state estimation for unmeasured states; these estimators (e.g., 

Kalman filter [3], extended Kalman filter [30], and moving horizon estimation [4,30]) also require noisy process 

measurements. As the proposed method targets measurement noise, it can be adapted to be compatible with the state 

estimators and improve the quality of estimates (provided that the system is both identifiable and observable). 

In both case studies, the time intervals (i.e., sampling times) are chosen based on literature values [31]. Moreover, the 

RTO intervals were chosen to be significantly longer than the transient times as to satisfy assumption 1 (section 3). 

The noise levels are set to be sufficiently high to cause large errors in PE, the minimum number of measurements 

were based on preliminary tuning experiments, and the sample size 𝑀 was for each case was determined using 

equation (31). The proposed scheme will be denoted as “RTO (lv-PE)” while the regular RTO will be denoted as 

simply “RTO”. 

The scheme is deployed for various combinations of uncertain parameter(s) as different scenarios within in each case 

study; the goal of the RTO is to repeatedly estimate the uncertain parameters and operate the system as close to the 

true optimum as possible. During this time, disturbances were assumed to be measurable and steady as to be able to 

assess the scheme in the neighbourhood of the optimal operating point and not in large transients; since RTO is a 

steady state scheme, significant dynamics could confound the analysis. As such, any dynamics observed are owed to 

set point fluctuations and control actions incited by changing parameter estimates in the RTO and NMPC layers, 

respectively. 

The schemes were assessed on three factors: parameter variability, process cost, and constraint violation (in cases 

where this occurs). Metrics to quantify these factors are computed a posteriori to each simulated case study for both 

RTO-operated systems with the standard PE and the lv-PE. Firstly, the variability is captured through the standard 

deviation of parameter estimates computed using formulations (7) and (19). The standard deviation of parameter 

estimates is central to the proposed approach as it is the main factor effected by the 𝐼𝐶 procedure in section 3.2., which 

reduces variability using equation (21). As the system is repeatedly estimating parameters for each realization, the 

variability measures how much these parameters vary by PE execution such that low variability is desired. Secondly, 

the process economics, which the reduced parameter variability improves upon, are computed through the cumulative 

process revenue/cost in equation (28) divided by the total operating time of a given scenario. As the system should 

operate primarily at steady state, this mean process cost should approximate the RTO-optimal steady state cost 

achieved for each case/scenario. Furthermore, constraint violations can occur as previously mentioned; the cumulative 

violation is computed using equation (32). As these violations are undesirable, the constraint violation metric used 

herein is ideally minimized by estimating parameters that yield non-violating set points in the RTO layer. 
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Both case studies were simulated and optimized in the Pyomo environment, which is a modelling package for 

PYTHON [32]. Both dynamic simulations were discretized in the time domain using four-point Radau collocations 

on finite elements per sampling interval. The optimization problems were solved using the MA27 IPOPT solver from 

the HSL library [33] on an Intel core i7-4770 CPU @ 3.4 GHz. 

4.1. Forced circulation evaporator  

 
Figure 4: Forced-circulation evaporator process. Blue denotes controlled variables, green denotes manipulated variables, and 
red denotes additional measurements (i.e., aside from the controlled variables) as implemented in the present study.  

The forced circulation evaporator (Figure 4) is a common unit in chemical plants; the mechanistic process model, 

along with its use in simulation studies, was first introduced by Lee, Newell and Sullivan [28]. The system is of 

particular interest in the process control literature because of its nonlinearity and many potential control loops owed 

to the number of possible manipulated/controlled variable pairings [34]. Moreover, the optimal operating point of the 

system has been observed to occur at an active constraint, hence it provides a good setting in which to investigate the 

effect of parameter estimates under a potential RTO constraint violation. The evaporator model consists of the 

following material balances: 

𝐻
𝑑𝑋-
𝑑𝑡 = 𝐹(𝑋( − 𝐹-𝑋- (33-1)  

𝐾
𝑑𝑃-
𝑑𝑡 = 𝐹t − 𝐹u (33-2)  

𝐹- = 𝐹( − 𝐹t (33-3)  

𝑃100
(steam)	𝐹100 , 𝑇100

(feed) 𝐹1, 𝑇1, 𝑋1
𝐹3 𝐹2

𝑇2, 𝑋2 (product)

𝐹200

𝑃2

𝐹5

𝐹4, 𝑇3
𝑇200 (cooling water)

condensate

evaporator

separator
condenser
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where 𝐹(, 𝐹-, 𝐹t, and 𝐹u	(𝑘𝑔/𝑚𝑖𝑛) are the stream mass flowrates outlined in Figure 4; 𝑋( and 𝑋-(%) are the feed and 

product compositions of the product chemical, respectively, and 𝑃-(𝑘𝑃𝑎) is the evaporator pressure. Note that the 

third material balance (33-3) implies a constant mass holdup in the evaporator, which is reflected in the constant 

holdup term 𝐻(𝑘𝑔). The energy balance over the entire process is modelled as follows: 

𝑇- = 0.5616𝑃- + 0.3126𝑋- + 48.43    (33-4)  

𝑇* = 0.507𝑃- + 55 (33-5)  

𝐹t =
𝑄(22 − 𝐹(𝐶b(𝑇- − 𝑇()

𝜆  (33-6)  

where 𝑇(, 𝑇-, and 𝑇*	(°𝐶) are the stream temperatures as outlined in Figure 4 whereas 𝑄(22(𝑘𝑊) is the steam jacket 

heat duty. The steam jacket energy balance is modelled as follows: 

𝑇(22 = 0.1538𝑃(22 + 90  (33-7)  

𝑄(22 = 𝑈𝐴((𝑇(22 − 𝑇-) (33-8)  

𝑈𝐴( = 0.16(𝐹( + 𝐹*) (33-9)  

𝐹(22 =
𝑄(22
𝜆\

 (33-10)  

where 𝑇(22(°𝐶) , 𝑃(22(𝑘𝑃𝑎), and 𝐹(22(𝑘𝑔/𝑚𝑖𝑛) are the saturated steam temperature, pressure, and mass flowrate, 

respectively. 𝑈𝐴((𝑘𝑊/°𝐶) is the heat jacket heat transfer coefficient. The condenser is modelled as follows: 

𝑄-22 =
𝑈𝐴-(𝑇* − 𝑇-22)

1 + 𝑈𝐴-
2𝐶b𝐹-22

 
(33-11)  

𝐹u =
𝑄-22
𝜆  (33-12)  

where 𝑇-22(°𝐶) , 𝑄-22(𝑘𝑊) , and 𝐹-22(𝑘𝑔/𝑚𝑖𝑛) are the cooling water temperature, cooling duty, and mass flowrate, 

respectively. In this case, the manipulated variables are the steam pressure, cooling water flowrate, and recirculation 

flowrate (i.e., 𝒖 = [𝑃(22 𝐹-22 𝐹*]S); the controlled variables are the product composition, temperature, and 

evaporator pressure (i.e., 𝒚 = [𝑋- 𝑃- 𝑇-]S); the uncertain parameter is the condenser heat transfer coefficient (i.e., 

𝜽 = [𝑈𝐴-]S). The initial measurements are the controlled variables, as well as the separator outlet temperature (i.e., 

𝒛2 = [𝑋- 𝑃- 𝑇- 𝑇*]S). The process losses are to be minimized according to the following objective function: 

𝛷 = 𝑃q(𝐹- + 𝐹*) + 𝑃\𝐹(22 + 𝑃v𝐹-22 (34)  
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where 𝑃q, 𝑃\, and 𝑃v are the electricity, steam, and cooling water prices, respectively, in Table S1 (supplementary 

information).  

The RTO and NMPC problems (5) and (6) are subject to the following constraints on the controlled variables: 

25 ≤ 𝑋-(%) ≤ 100 (35-1)  

40 ≤ 𝑃-(𝑘𝑃𝑎) ≤ 80 (35-2)  

Moreover, the RTO and NMPC problems are also subject to constraints on the manipulated variables: 

10 ≤ 𝑃(22(𝑘𝑃𝑎) ≤ 400 (36-1)  

10 ≤ 𝐹-22(𝑘𝑔/𝑚𝑖𝑛) ≤ 400 (36-2)  

1 ≤ 𝐹*(𝑘𝑔/𝑚𝑖𝑛) ≤ 100 (36-3)  

Lastly, following constraints are imposed on the estimated parameters in problems (7) and (19): 

0.1 ≤ 𝑈𝐴-(𝑘𝑊/°𝐶) ≤ 20 (37)  

Table S1 (supplementary information) presents the model parameters and nominal values used in this study. 

The proposed scheme was implemented for this case study using the process model, controlled variables, manipulated 

variables, constraints, and uncertain parameters described in this section. The system is operated for 833	ℎ with an 

RTO period of ∆𝑇 = 16	ℎ𝑜𝑢𝑟𝑠 and a sampling interval of ∆𝑡 = 4	𝑚𝑖𝑛𝑢𝑡𝑒𝑠. 𝑛g,m#! = 1 was chosen based on prior 

identifiability analysis and the process and measurement noises (𝒘,𝒗; owed to mismatch and instrumentation error, 

respectively) are additive and zero-mean with 0.1% of the nominal state values as variance 𝒩(0, (0.001𝒙𝒏𝒐𝒎)-). The 

NMPC controller tuning for formulation (5) is 𝑸 = 𝑑𝑖𝑎𝑔(1, 1, 1), 𝑹 = 𝑑𝑖𝑎𝑔(0.09, 15, 20) and 𝑃 = 𝐶 = 200∆𝑡; these 

are based on preliminary manual tuning to balance tracking speed and stability. Table 1 presents the formulations to 

the corresponding optimization problems (5), (6), and (7) associated with this case study. 
Table 1: PE, RTO, and NMPC formulations for evaporator case study. *S.S. indicates that a steady-state version of the model is 

used in the corresponding layer. 

 PE RTO NMPC 

Objective 
function ‖𝒛o − 𝒛n‖𝑲-.

- Eq. (34) >f𝒚𝒔𝒑 − 𝒚6𝒕'𝒊f𝑸
-

-22

#1(

+>f∆𝒖𝒕'𝒋f𝑹
-

-22

%1(

 

Decision 
variables 𝜽 = [𝑈𝐴-]S 𝒚 = [𝑋- 𝑃- 𝑇-]S 𝒖𝒕'𝟏 = [𝑃(22,6'( 𝐹-22,6'( 𝐹*,6'(]S 

Model Eq. (33). S.S. model Eq. (33). S.S. model Eq. (33). Dynamic model 
Constraints Eq. (37) Eqs. (35)-(36) Eqs. (35)-(36) 

Inputs 
𝒛n = [𝑋n- 𝑃n- 𝑇n- 𝑇n*]S 
𝒖< = [𝑃n(22 𝐹n-22 𝐹n*]S 
𝒅< = [𝐹n( 𝑇n( 𝑋n(]S 

𝜽 = [𝑈𝐴-]S 
𝒅 = [𝐹( 𝑇( 𝑋(]S 

𝒙𝟎 = [𝑋- 𝑃-]S 
𝒚𝒔𝒑 = [𝑋-,\b 𝑃-,\b 𝑇-,\b]S 
𝒅𝒕 = [𝐹(,6 𝑇(,6 𝑋(,6]S 
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The CPU time of each challenger problem is ~0.03	𝑠𝑒𝑐𝑜𝑛𝑑𝑠, which is significantly less than the sampling time. 

Accordingly, the sampling time dictates the computational burden of the information content procedure as per equation 

(30) and the RTO sample size is set to 𝑀 = 60 as per equation (31). All scenarios tested required 𝑘 = 4 sets of 

challenger problems as shown in Table 2, which corresponds to an actual computational burden of ~3.3	ℎ𝑜𝑢𝑟𝑠 (to 

perform all challenger problems), which is well within the RTO period of 16	ℎ𝑜𝑢𝑟𝑠, thus enough data can be collected 

within the RTO period to perform the information content procedure with no delay. 

The uncertain parameter is assumed to materialize in the interval [(1 − 𝛼)𝜃!am, (1 + 𝛼)𝜃!am], where  𝛼 = 0.1, for 

simplicity. The nominal parameter value (corresponding to the initial operating point) can be found in Table S1 

(supplementary information). In each scenario, the true plant parameter manifests at a value from the five uniformly 

spaced points shown in the first row of Table 2. It should be noted that the scheme can be used to estimate any 

realization of the “true” parameter value; however, the five scenarios in Table 2 were chosen such that they would be 

representative of the entire uncertain parameter domain while limiting the number of scenarios required for testing.  
Table 2: Results for parameter scenarios in the evaporator case study under low-variance and regular RTO implementations.  

 Scenario 1 

(S1) 

Scenario 2 

(S2) 

Scenario 3 

(S3) 

Scenario 4 

(S4) 

Scenario 5 

(S5) 

𝑈𝐴-	(𝑘𝑊/𝐾) 0.9𝜃!am 0.95𝜃!am 𝜃!am 1.05𝜃!am 1.1𝜃!am 

𝜎l,cd	(𝐾) 0.67 0.61 0.03 0.28 0.65 

𝜎l,e	(𝐾) 1.85 1.17 0.82 0.82 2.45 

𝑃nUSV	(cd/Hx)	($/𝑠) 272.77 343.11 270.71 270.39 370.00 

𝑃nUSV	($/𝑠) 245.20 272.18 303.32 261.73 255.52 

𝑆𝐴𝑉USV	(cd/Hx)	(%) 2151.51 21310.10 3878.97 5407.98 4023.45 

𝑆𝐴𝑉USV	(%) 229805.00 186815.60 160069.42 146878.65 179640.75 

𝑘 4 4 4 4 4 

Figure 5a displays the process losses for several of the scenarios listed in Table 2. It should be observed that the losses 

and average price rate (𝑃n) in all scenarios (except S3) are lower (i.e., favourable) for the regular RTO implementation 

than the lv-PE/RTO. This occurs despite the lower variation in the parameter estimates (𝜎) for all scenarios achieved 

by the lv-PE/RTO as summarized in Table 2. Figure 5b elucidates that the regular RTO is achieving this decreased 

cost through violation of the composition constraint in equation (35-1); this is also reflected in substantially lower 

𝑆𝐴𝑉 when the lv-PE/RTO is implemented. The 𝑆𝐴𝑉, as defined in equation (32), ranges from one to two orders of 

magnitude lower when using the lv-PE/RTO than those achieved when using the regular RTO; this results in 

significant less product being off-specification. The constraint violation occurs as the RTO and NMPC models, which 

have the estimated parameters, are mismatched from the plant, which has the “true” parameters. Thus, the set points 

for the RTO and control actions for the NMPC, which appear constraint-abiding in their corresponding optimization 
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problems, are not so when implemented in the plant. As a result, the better (i.e., lower) price rates of the regular RTO 

are misleading as the product being produced in the constraint-violating periods will not meet the required 

specifications. In reality, off-specification product such as that produced in the regular RTO implementation would 

have to be reprocessed, thereby increasing the processing costs. As the re-processing cost is not considered herein, the 

regular RTO misleadingly appears to be economically superior in all scenarios (except for S3, where the true parameter 

was set to their nominal value). In contrast, Figure 5b also shows that the lv-PE/RTO generally operates the plant 

directly at the constraint and does not vary the set point for 𝑋- as it does with the set points for 𝑇- and 𝑃- as shown in 

Figure 5c and Figure 5d, respectively. As such, most constraint violation that occurred using the lv-PE/RTO was likely 

owed to noisy plant fluctuations and not to the proposed parameter estimation scheme.  

 
Figure 5: Economics and controlled variables for the evaporator case study. a) losses ($), b) product composition, c) product 
temperature, d) evaporator pressure. 

This variation caused by the parameter on the RTO operation is seen most prominently on Figure 5c and Figure 5d 

whereby the product temperature and evaporator pressure controlled variables vary when using the regular RTO 

compared to a significantly more consistent operation produced by the lv-PE/RTO. This variation has a significant 

impact on the process cost as observed in the sub-window of Figure 5a, where the optimal cost for the lv-PE RTO 

implementation does not actually vary significantly with respect to the true parameter realizations while the cost of 

the PE/RTO does despite only a single parameter being assumed to be uncertain in this process. Aside from the 

constraint violation observed for this case study, the increased variability of the regular RTO also leads to a more 

active control layer, which is undesirable from an operation and maintenance perspective (not shown for brevity). 

4.2. Williams-Otto CSTR 
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Figure 6: Williams-Otto CSTR. Blue denotes controlled variables and green denotes manipulated variables as implemented in the 
present study. 

The continuous stirred-tank reactor (CSTR) first described by Williams and Otto [29] is another common system used 

for real-time optimization and control studies (e.g., [18, 20, 30]). This system has been used as a benchmark example 

for many economic optimization methods as it provides a relatively small but nonlinear setting that can be used to 

highlight potential economic improvements. The process is depicted in Figure 6 and consists of two pure inlet streams 

of substrates 𝐴 and 𝐵 with mass flowrates 𝐹y and 𝐹z	(𝑘𝑔/𝑠), respectively. While the former flowrate is a disturbance 

variable, the latter serves as a manipulated variable. Three reactions occur in the system as shown in whereby 𝐷 and 

𝐸 are the desired products while 𝐶 and 𝐺 are intermediate and undesirable biproducts, respectively:                

𝐴 + 𝐵
7.→ 𝐶:		𝑘( = 𝐴(𝑒/x./S1 (38-1)  

𝐵 + 𝐶
7<→𝐷 + 𝐸:		𝑘- = 𝐴-𝑒/x</S1 (38-2)  

𝐶 + 𝐷
7=→𝐺:		𝑘* = 𝐴*𝑒/x=/S1 (38-3)  

where 𝑘(, 𝑘-, and 𝑘*	(𝑠/() are the reaction rate constants as expressed by the rate laws with pre-exponential factors 

(𝐴(, 𝐴-, 𝐴*(𝑠/()) and activation energies (𝐸(, 𝐸-, 𝐸*(𝐾)). The activation energies in this case study are in units of 

temperature as converted using ideal gas constant. These rate laws depend on the tank temperature 𝑇U(𝐾). The process 

dynamic and steady state behaviour are modelled using the equations: 

𝑊
𝑑𝑋y
𝑑𝑡 = 𝐹y − 𝐹U𝑋y − 𝑟( (38-4)  

𝑊
𝑑𝑋z
𝑑𝑡 = 𝐹z − 𝐹U𝑋z − 𝑟( − 𝑟- (38-5)  

𝑊
𝑑𝑋?
𝑑𝑡 = −𝐹U𝑋? + 2𝑟( − 2𝑟- − 𝑟* (38-6)  

𝐹𝐵𝐹𝐴

𝐹𝑅 , 𝑋𝐴 , 	𝑋𝐵 , 	𝑋𝐶 , 	𝑋𝐷 , 	𝑋𝐸 ,	𝑋𝐺

𝑊,𝑇𝑅
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𝑊
𝑑𝑋|
𝑑𝑡 = −𝐹U𝑋| + 𝑟- − 0.5𝑟* (38-7)  

𝑊
𝑑𝑋x
𝑑𝑡 = −𝐹U𝑋x + 𝑟- (38-8)  

𝑊
𝑑𝑋}
𝑑𝑡 = −𝐹U𝑋} + 1.5𝑟* (38-9)  

where 𝑋y, 𝑋z, 𝑋?, 𝑋|, 𝑋x, and 𝑋} 	(𝑘𝑔/𝑘𝑔) are the respective component mass fractions. 𝑊	(𝑘𝑔) is the mass holdup 

in the tank, which is assumed to be constant such that the tank material is always at steady state, i.e., 

𝐹U = 𝐹y + 𝐹z                                                                                                                                  (38-10)  

where the tank outlet flowrate is 𝐹U(𝑘𝑔/𝑠). The reactions proceed according to the substrate concentrations as follows: 

𝑟( = 𝑘(𝑋y𝑋z𝑊 (38-11)  

𝑟- = 𝑘-𝑋z𝑋?𝑊 (38-12)  

𝑟* = 𝑘*𝑋?𝑋|𝑊 (38-13)  

where 𝑟(, 𝑟-, and 𝑟*(𝑠/() are the reaction rates. The manipulated variables for this process are the inlet flowrate of 𝐵 

and tank temperature (i.e., 𝒖 = [𝐹z 𝑇U]S). The controlled variables, states, and initial measurements are the 

component mass fractions (i. e. , 𝒛2 = 𝒚 = 𝒙 = [𝑋y 𝑋z 𝑋? 𝑋| 𝑋x 𝑋}]S). The model uncertain parameters 

considered in this case study are the activation energies (i.e., 𝜽 = [𝐸( 𝐸- 𝐸*]S). The process revenue is to be 

maximized in this case according to the following objective function:  

𝛷 = 𝑃|𝐹U𝑋| + 𝑃x𝐹U𝑋x − 𝑃y𝐹y − 𝑃z𝐹z − 𝑃S𝑇U (39)  

where 𝑃|, 𝑃x, 𝑃y, and 𝑃z are the prices of the products and substrates in Table S2 (supplementary information).  

The RTO and NMPC problems (5) and (6) are subject to constraints on the controlled variables: 

0 ≤ 𝑦#(𝑘𝑔/𝑘𝑔) ≤ 1                                                                                                                                 ∀𝑖 ∈ {1,… , 𝑛`} (40)  

Moreover, the RTO and NMPC problems are also subject to constraints on the manipulated variables: 

2 ≤ 𝐹z(𝑘𝑔/𝑠) ≤ 10 (41-1)  

323.15 ≤ 𝑇U(𝐾) ≤ 423.15 (41-2)  

Lastly, following constraints are imposed on the estimated parameters in problems (7) and (19): 
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0.1 ≤ 𝐸(,𝐸-,𝐸*(𝐾) ≤ 50,000 (42)  

Table S2 (supplementary information) contains the model parameters and nominal values as used in this study. 

The proposed scheme was implemented for the present case study with the model, controlled variables, manipulated 

variables, constraints and uncertainty parameters described above. The system is operated for 500	ℎ with an RTO 

period of ∆𝑇 = 6.5	ℎ and a sampling interval of ∆𝑡 = 3	𝑚𝑖𝑛. 𝑛g,m#! = 3 was determined based on preliminary 

identifiability analysis and the process and measurement noises (𝒘,𝒗) are additive and zero-mean with 10% of the 

nominal state values as variance 𝒩(0, (0.1𝒙𝒏𝒐𝒎)-). The NMPC controller tuning for formulation (5) is 𝑸 =

𝑑𝑖𝑎𝑔(1, 1, 1, 2, 1, 2), 𝑹 = 𝑑𝑖𝑎𝑔(3, 0.03), and 𝑃 = 𝐶 = 10∆𝑡, based on preliminary manual controller tuning. Table 

3 presents the formulations to the corresponding optimization problems (5), (6), and (7) associated with this case 

study. 
Table 3: PE, RTO, and NMPC formulations for evaporator case study. *S.S. indicates that a steady-state version of the model is 

used in the corresponding layer. 𝑆 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐺} is the set of all species. 

 PE RTO NMPC 

Objective 
function ‖𝒛o − 𝒛n‖𝑲-.

- Eq. (39) >f𝒚𝒔𝒑 − 𝒚6𝒕'𝒊f𝑸
-

(2

#1(

+>f∆𝒖𝒕'𝒋f𝑹
-

(2

%1(

 

Decision 
variables 

𝜽 = [𝐸( 𝐸- 𝐸*]S 𝒚 = [𝑋#∀𝑖 ∈ 𝑆]S 𝒖𝒕'𝟏 = [𝐹z,6'( 𝑇U,6'(]S 

Model Eq. (38). S.S. model Eq. (38). S.S. model Eq. (38). Dynamic model 
Constraints          Eq. (42) Eqs. (40)-(41)  Eqs. (40)-(41) 

Inputs 
𝒛n = [𝑋n#∀𝑖 ∈ 𝑆]S 
𝒖< = [𝐹nz 𝑇nU]S 
𝒅< = [𝐹ny]S 

𝜽 = [𝐸( 𝐸- 𝐸*]S 
𝒅 = [𝐹y]S 

𝒙𝟎 = [𝑋#,6∀𝑖 ∈ 𝑆]S 
𝒚𝒔𝒑 = [𝑋#,\b∀𝑖 ∈ 𝑆]S 

𝒅𝒕 = [𝐹y,6]S 

In the present case study, each challenger RTO problem required ~0.02	𝑠 to perform and, as with the previous case 

study, this implies that ∆𝑡 > ∆𝑡_]mm`. Thus, 𝑀 = 20 according to equation (31) to avoid delays. As stated in Table 

4, all scenarios required either 𝑘 = 5 or 𝑘 = 6  sets of challenger problems to be performed, leading to a total 

computational time of 5 and 6	ℎ𝑜𝑢𝑟𝑠 (to perform all challenger problems), respectively. This is within the RTO period 

time; thus, enough data can be collected, and the challenger problems can be performed with no computational delay 

to the RTO as determined with equation (31). 

Each uncertain parameter is assumed to materialize only at a low (𝑙), nominal (𝑛), and high (ℎ) value in the interval 

[(1 − 𝛼)𝜽𝒏𝒐𝒎, (1 + 𝛼)𝜽𝒏𝒐𝒎], where 𝛼 = 0.1 and the nominal parameters listed in Table S2 (supplementary 

information). To the authors’ knowledge, this represents the largest parameter uncertainty region to have been 

considered for the Williams-Otto plant. Hence, a total of 3* possible uncertainty scenarios were possible from which 

the 9 scenarios Table 4 were randomly selected as a representative sample. As with the previous case study, the 

discretization of the uncertainty was done for simplicity and the proposed scheme can be used to estimate any 

parameter combination within the aforementioned interval (i.e., it is not limited to any particular set of parameter 

realizations).    
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Table 4: Results for parameter combination scenarios in the Williams-Otto case study under low-variance and regular RTO 
implementations. 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 

𝐸( ℎ ℎ 𝑛 ℎ ℎ 𝑙 ℎ 𝑛 𝑛 

𝐸- 𝑛 𝑙 𝑛 ℎ ℎ 𝑙 𝑙 𝑙 𝑛 

𝐸* ℎ 𝑙 ℎ 𝑛 ℎ 𝑙 𝑛 ℎ 𝑙 

𝜎l,cd	(𝐾) 99 106 51 59 66 71 201 250 128 

𝜎l,e	(𝐾) 3325 3734 1964 3678 3513 4693 4973 5198 4978 

𝑃nUSV(cd/Hx)	($/𝑠) 2.99 −4.83 5.17 −6.39 −2.40 −1.69 1.21 7.90 −6.33 

𝑃nUSV	($/𝑠) 2.44 −5.01 5.00 −7.19 −2.77 −3.18 1.01 7.29 −7.51 

%𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡H~  18.39 3.73 3.29 12.52 15.42 88.16 16.53 7.72 18.64 

𝑘 6 6 6 5 6 6 6 6 5 

Figure 7 displays the process revenue/losses for several non-overlapping scenarios from Table 4 calculated using 

equation (28). As can be observed, the parameter combination affects whether the process will operate at a revenue or 

loss; the Williams-Otto plant is only profitable in some cases. Nevertheless, the lv-PE/RTO always results in a more 

economical operation. This is reflected in the average profit rates (𝑃n) for both schemes as shown in Table 4 whereby 

the lv-PE/RTO has lower average rates in all scenarios as quantified in the %improvement. These improved economics 

are a result of the decreased variation in the parameter estimates over the 80 RTO periods analyzed, which are observed 

to generally have decreased by one or two orders of magnitude as per the 𝜎 values in Table 4. Depending on the 

parameter combination, the lv-PE/RTO can lead to modest (e.g., 3.28% for S3) or significant (e.g., 88.16% for S6) 

improvements on revenue/loss with respected to the regular RTO. 



 30 

 
Figure 7:Revenue/loss ($) for several of the scenarios in the Williams-Otto case study. 

The effect of variance manifests most directly on the manipulated variables, as shown for S8 and S9 in Figure 8 and 

Figure 9, respectively. Figure 8 exemplifies the effect that measurement noise has on the NMPC and RTO via the 

parameter updates in an operating scenario without active constraints. As displayed therein, both manipulated 

variables have brief spikes that correspond to the cases when parameters and set points are changed through execution 

of the PE and RTO. This is primarily due to the sudden change in controller parameters, which momentarily sends the 

system on a transient, but also corresponds to small set point corrections. These spikes were observed to be 

significantly smaller for the lv-PE/RTO than the regular RTO; the resulting transients, which are shorter when the lv-

PE/RTO is employed, ensure that the system operates near its optimum for a longer period, thus improving economic 

performance. The lv-PE/RTO can be observed to result in a far more consistent performance, thus damping the effect 

of the noisy measurements on the scheme. Figure 9 is an atypical scenario where the optimal operating policy occurs 

at the lower bounds of the manipulated variables in equation (41); however, this further elucidates how the lv-PE/RTO 

can maintain the system at its bound with smaller and less frequent deviations. Another consequence observed therein 

is the effect of the filter-step of the lv-PE/RTO to avoid periods where the system is operating at non-optimal points. 

This is also observed between 𝑇 = 30 and 𝑇 = 40 in Figure 9 whereby both manipulated variables are not operating 

at their bounds (i.e., the economic optimum); meaning that the regular RTO was passed an significantly suboptimal 

set of set points and parameters, which did not reflect the current operating conditions. 
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Figure 8: Manipulated variables for S8 of the Williams-Otto case study under the lv-PE/RTO and the regular RTO implementations. 
(a) reactor temperature, (b) inlet flowrate of substrate “B”. 

 
Figure 9: Manipulated variables for S9 of the Williams-Otto case study under the lv-PE/RTO and the regular RTO implementations. 
(a) reactor temperature, (b) inlet flowrate of substrate “B”. 

Figure 10 provides contours of the process profit rates (i.e., $/𝑡𝑖𝑚𝑒) for S8 and S9. These were constructed using the 

true plant parameters such that they are the “true” profit rate contours. Since these are the “true” contours that 

correspond to the true parameters in S8 and S9, the performance of the PE scheme can be assessed by how closely 

they approach the top elevations therein. If the steady-state combinations of manipulated variables are treated as a 

sampled quantity, the confidence ellipsoids for these manipulated variables in both regular RTO and lv-PE/RTO can 

be constructed. By superimposing these ellipsoids on the contours, the precision and accuracy of the PE schemes is 

visualized through the size and closeness to the true optimum, respectively. Figure 10 shows these ellipses being 

centered in the contour region with the most economical profit rates as per the black-shaded elevations, this confirms 

that the RTO is indeed operating generally near the optimum. However, in both scenarios, the confidence ellipse for 

the lv-PE/RTO can be observed to be inside the confidence ellipse for the regular RTO; this confirms that the variance 

in the steady-state manipulated variables has decreased, and in some cases by a significant amount (e.g., S9). The 

statistical interpretation follows that if many difference samples were taken to replicate the construction of the ellipses, 

then 95% of the constructed ellipses would contain the mean; as such small ellipses imply lower variation in the 



 32 

sampled quantities — in this case, the manipulated variables. Accordingly, the improvement in process economics 

occurs through this decrease in variation. 

   
Figure 10: Contour plots with the process profit rates ($/s) on the elevations and manipulated variables on the axes for the 
Williams-Otto case. (a) S8, (b) S9. 95% confidence ellipsoids shown for the manipulated variables under the regular RTO (dashed 
lines) and lv-PE/RTO (solid lines). 

5. Conclusion and future works 

Noisy measurements and model uncertainty are inevitable when operating chemical processes, which may lead to 

poor RTO performance. As RTO attempts to address model uncertainty by adapting model parameters, noisiness can 

propagate to these parameter estimates leading to poor process performance. This study presents a novel low-variance 

parameter estimation (lv-PE) scheme applied to RTO for noisy processes. The proposed scheme uses the information 

content (𝐼𝐶) metric, as well as establishing parameter bounds for filtering; these novelties reduce the variability in 

parameter estimates over time and eliminates poorly estimated parameters, respectively. The scheme is motivated 

through an analysis of RTO economics as affected by set point error owed to parameter inaccuracy. Moreover, the 

potential computational cost of the scheme is analyzed to avoid any delays are incurred as a result. The proposed 

scheme was implemented in two case studies, namely a forced circulation evaporator and the Williams-Otto CSTR. 

The evaporator displayed the ability of the proposed scheme to avoid constraint violations by one to two orders in 

magnitude, while the Williams-Otto case study showed the improvement yielded by the proposed scheme on process 

economics ranging from ~4 to 88%, depending on the scenario. Although the benefit provided by the lv-PE to each 

case study was different, both were observed to result in significant reduction in parameter variation owing to the lv-

PE/RTO of one to two orders of magnitude. 

Despite the positive results observed herein, some aspects of the lv-PE/RTO remain to be investigated. Namely, both 

case studies observed herein have fast dynamics and were assumed to be sampled frequently; indeed, this is a key 

feature in the motivation of the method. A future research avenue could observe the impact of the lv-PE/RTO in slower 

systems, which will take longer to perform the information content procedure. Conversely, the effects of variation in 

parameters could be more pronounced as slower system could be operating suboptimally for longer periods of time. 

Similarly, both systems in this study featured relatively small models that could be solved quickly to also facilitate the 

information content procedure (i.e., execution of the challenger problems). In the future, the proposed scheme should 

also be tested in larger systems where the models are less parsimonious causing delays in the lv-PE/RTO. Additionally, 
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the parameter update effect on model-based state estimators (e.g., moving horizon estimation) should also be explored. 

Alternatively, the concept of 𝐼𝐶 to pre-process measurements and generate parameter bounds could be adapted for a 

state, parameter, or disturbance estimation procedure (or a joint estimation procedure). Moreover, the respective 

estimators could also be adapted as dynamic problems to address issues such as parameter drift or frequent 

unmeasurable disturbances. Finally, as noted previously, another direction for future work is the extension of the 

current methodology for joint estimation variance reduction and GED. 
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