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Abstract 5 

The operational cost of post-combustion carbon capture remains the principal factor impeding its uptake, thus real-6 

time optimization has been proposed for economic operation. This requires that uncertainties be estimated, subjecting 7 

its solutions to estimation error. Herein, we propose uncertainty estimation and real-time optimization for post-8 

combustion carbon capture plants. Model parameters are estimated using noisy measurements to address model 9 

uncertainty; accordingly, we deploy a low-variance scheme to address noise propagation. Our approach is 10 

implemented in a pilot-scale carbon capture plant through uncertain flue gas compositions and thermodynamic 11 

activities. The proposed method results in operating points closer to the true optima, with up to 25% improvement in 12 

economics compared to alternative operational approaches. Moreover, a robust real-time optimization strategy is 13 

proposed for cases in which model parameters and economic factors are simultaneously uncertain. The robust update 14 

strategy is deployed jointly with the low-variance estimation scheme to quantify the uncertainty in each model 15 

parameter, resulting in economic improvements and a notable reduction (~80%) in the set point variability over the 16 

standard update approach. Through the schemes proposed, the carbon capture plant was able to operate at set points 17 

with high capture rates, low energy consumption, and low cost. This suggests that the proposed approach is suitable 18 

for the economic optimization of other energy and carbon capture systems.  19 
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1. Introduction 27 

While the worldwide demand for sustainable systems grows, greenhouse gas (GHG) emissions remain deeply 28 

entrenched with the methods used to produce energy. CO2 is the most abundant of the GHGs and makes the greatest 29 

contribution to global warming, accounting for an increase of ~0.75℃ in the last decade relative to the late 19th century 30 

(Masson-Delmotte et al., 2021). The production of CO2 is particularly sizable in large and developing economies 31 

(IEA, 2021), which require fossil fuels to meet growing energy demands. Many mitigation strategies have been 32 

proposed to abate the production of CO2; chiefly among these is carbon capture and storage (CCS), which aims to 33 

remove and sequester CO2 from industrial sources for later repurposing or deposition in reservoirs. 34 

CCS can be achieved through several methods including adsorption (Ben-Mansour et al., 2016), chemical looping 35 

combustion (Lucio and Ricardez-Sandoval, 2020), membrane gas separation (Khalilpour et al., 2016), oxy-fuel 36 

combustion (Chansomwong et al., 2014), and post-combustion capture (PCC) (Chao et al., 2021; Gaspar et al., 2016; 37 

Liu et al., 2019). Of these technologies, PCC is the most developed, with pilot-scale (Dugas, 2006; Tontiwachwuthikul 38 

et al., 2022) and industrial-scale (Huang et al., 2010; Monañés et al., 2018) plants in operation. Despite the maturity 39 

of PCC, its widespread adoption in industry has been slow. This is primarily owed to the PCC process economics, 40 

which, under the current incentives, pose a net financial detriment to the associated upstream power plant where profit 41 

is prioritized.  42 

To overcome the issue of prohibitive cost, extensive analyses have been conducted on the economics of PCC plants 43 

under varying operational modes and assumptions (e.g., different upstream processes, power plant fuels and loads, 44 

and carbon tax rates) (Carminati et al., 2019; Danaci et al., 2021; Jiang et al., 2021; Nwaoha and Tontiwachwuthikul, 45 

2021). Other approaches have looked to find economical operational schemes for PCC (Luu et al., 2015; Mechleri et 46 

al., 2017; Panahi et al., 2012), including various optimization schemes at different timescales. Nonetheless, many of 47 

these approaches consider constant carbon capture rates, which are maintained by a control layer. In contrast, while 48 

less investigated in the PCC literature, some authors have proposed using model-based optimization to update the 49 

process in real time; these allow for frequent updating of the PCC operation to match changing upstream power plant 50 

and process conditions. Real-time production schemes, which typically use high-fidelity models, can be divided into 51 

two broad categories: economic model predictive control (EMPC; Ellis et al., 2014) and real-time optimization (RTO; 52 

Darby et al., 2011).  53 
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EMPC uses a dynamic optimization approach to determine economically optimal actions for plant manipulated 54 

variables, while RTO uses steady-state optimization to update process set points to be tracked by a controller. Chan 55 

and Chen (2018) and Decardi-Nelson et al. (2018) have both applied an EMPC approach for the operation of PCC. 56 

The former considered solvents and utility costs while the latter considered carbon taxes and energy costs. Recently, 57 

Decardi-Nelson and Liu (2022) proposed a robust EMPC that considered absorber efficiency while accounting for 58 

model uncertainty and disturbances using a zone modification method. For RTO, Decardi-Nelson et al. (2018) 59 

proposed a scheme with an equivalent objective function to their EMPC scheme, while Akula et al. (2021) considered 60 

pumping, cooling, and heating costs in an alternative RTO formulation. Despite the variety of proposed real-time 61 

economic optimization schemes in the PCC literature, all the previous approaches omitted significant aspects of PCC 62 

economics, thus limiting their real-life application. Our previous works (Patrón and Ricardez-Sandoval, 2020a; 2022a) 63 

filled this gap by introducing the most comprehensive PCC economic function posed in a generic way as to be applied 64 

to any PCC plant (e.g., with different designs and solvents). Moreover, we integrated the RTO scheme with a control 65 

and state estimation procedure.  66 

Process models used for optimization are subject to idealizations or experimentally determined parameters leading to 67 

plant-model mismatch. In energy systems, where the behaviour is often nonlinear and subject to large disturbances 68 

and parametric uncertainty, this can result in large deviations between plant outputs and model predictions. 69 

Accordingly, energy system models should be continually updated, thereby reconciling the model with the plant which 70 

can address uncertainty to achieve near-optimal performance. Uncertainty is particularly salient in PCC where a 71 

nonlinear carbon capture plant interacts with a nonlinear power plant. Accordingly, this topic has been investigated 72 

for several applications. The design of PCC under uncertainty has been addressed through ranking-based (Bahakim 73 

and Ricardez-Sandoval, 2015) and multi-scenario (Cerrillo-Briones and Ricardez-Sandoval, 2019) approaches. In the 74 

control layer, several robust controllers (Jung et al., 2020; Rúa et al., 2021; Zhang et al., 2018) have been proposed 75 

and paired with various state estimators (Patrón and Ricardez-Sandoval, 2022a; Yin et al., 2020); these often consider 76 

uncertain model structures, parameters, and unmeasurable/unmeasured variables. On longer timescales, scheduling 77 

(Zantye et al., 2019) and planning (Wu et al., 2015; Xuan et al., 2022; Zhang et al., 2021) schemes have been proposed 78 

for PCC, which generally address price and demand uncertainties. As per the literature, uncertainty has only been 79 

considered for online economic optimization of PCC in the context of EMPC (Decardi-Nelson and Liu, 2022); 80 

however, no study has considered uncertainty in an RTO-operated PCC process. The effect of uncertainty in real-time 81 
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steady-state decision making (i.e., not scheduling or planning time horizons) for PCC is unknown. To the authors’ 82 

knowledge, the online optimization studies for PCC described above limit their operating time to days at most, hence 83 

the interactions between decisions made in real-time with long-term process outcomes also remain unknown.  84 

While the models used in RTO are often mechanistic, there is no guarantee that the model parameters are near their 85 

true values; hence, parameters estimation schemes must be considered to improve the RTO’s predictions. Indeed, for 86 

a PCC system being modelled mechanistically, Hughes et al. (2022) recently showed the importance of parameter 87 

accuracy through uncertainty quantification of mass transfer and kinetic parameters and their impacts on the 88 

effectiveness of carbon capture. To this end, RTO schemes typically employ the so-called ‘two-step’ approach, 89 

whereby a parameter estimation (PE) layer is employed to update RTO model parameters periodically. RTO and PE 90 

have been considered independently for many systems including sludge-to-methane (Shi et al., 2022), hydrogen 91 

production PE (Xu et al., 2020), and poultry litter utilization (Ma et al., 2022). However, previous RTO 92 

implementations for PCC, have not considered the estimation layer of the two-step approach (i.e., they have assumed 93 

perfect parameters and measurable disturbances). In most of the cases, this is a strong assumption as online 94 

measurement of some disturbances (e.g., compositions) or perfect knowledge of model parameters (e.g., 95 

thermodynamic activities or mass transfer parameters) are not realistic. As such, this assumption remains to be 96 

addressed such that the PCC RTO is fully implementable in a real-life scenario. In contrast, cases with rapidly 97 

fluctuating parameters and economics make the two-step approach for RTO unsuitable as set points can quickly 98 

become suboptimal. Instead, a robust optimization approach could be deployed for this task. However, robust 99 

optimization, which has been an active research consideration for PCC in longer timescales, has also yet to be 100 

considered in context of RTO.  101 

An additional complicating factor to the uncertainty problem in RTO is measurement noise, which is unavoidable 102 

because of random fluctuations and instrumentation error. If the measurements are sufficiently noisy, parameter 103 

estimates may be computed with high error; this will cause erroneous set points to be produced by the RTO, leading 104 

economically suboptimal plant operation. In PCC plants, or indeed any large-scale energy system with many 105 

interactions and nonlinearities, the optimal steady-state operating point will be highly sensitive to model inputs such 106 

that noisy variations could have large economic and environmental consequences (e.g., increased losses and 107 

emissions). Methods to deal with this noise propagation, namely data reconciliation (DR; Bhat and Saraf, 2004; Miletic 108 

and Marlin, 1998; Yuan et al., 2015), have been proposed for this purpose. DR generally reconciles noisy 109 
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measurements with process models such that the measurements are consistent with the model. This approach, 110 

however, does not address the individual measurements explicitly because it is not selective of which measurements 111 

are used despite potentially varying impacts on the downstream estimation scheme. Moreover, the DR methods in the 112 

literature require the application of sensitivity information or additional process layers (e.g., Kalman filter and least-113 

squares minimization), respectively. While sensitivity information is computationally expensive to acquire in practice, 114 

the implementation of many additional decision layers is undesirable as it could make an already stratified processing 115 

scheme such as RTO increasingly convoluted. This leaves a gap for a practical method to deal with the issue of noise 116 

as it pertains to the steady-state estimation problem of process systems. In energy generation and its ancillary processes 117 

like PCC, where the process economics are paramount, the improvements made in abating the effects of noise in 118 

operating conditions may become a critical factor. Studies addressing the issue of measurement noise and data 119 

processing for PCC have not been reported. 120 

Based on the above, uncertainty in the real-time optimization of PCC plants has not been explicitly addressed. To the 121 

authors’ knowledge, noisiness also remains an open issue as it pertains to PCC estimation schemes and no method has 122 

been tested to abate its effects in CO2 capture systems; hence, the effect of parameter fidelity on model-based control 123 

and optimization performance for PCC has not been reported. In addition, parameter and economic robustness have 124 

not been jointly addressed in the online optimization of PCC. In particular, our previous work (Patrón and Ricardez-125 

Sandoval, 2022a), which is the most comprehensive RTO implementation in PCC to date, did not consider any type 126 

of uncertainty and a very limited set of disturbances. Accordingly, a detailed exploration of the optima across possible 127 

disturbances ranges, the addition of novel parameter estimation, and robust optimization layers, will provide new 128 

insights on the remaining computational challenges (i.e., uncertainty and noise) that could inhibit the deployment of 129 

online economic optimization in PCC plants. The specific objectives considered in the present study are as follows: 130 

1. A high-fidelity framework is proposed for the estimation of uncertainties in high noise environments without 131 

requiring data reconciliation. Model uncertainty in the thermodynamic parameters and flue gas compositions 132 

for PCC are estimated in the context of RTO.  133 

2. The proposed estimation scheme is compared to our previous work (Patrón and Ricardez-Sandoval, 2022a) 134 

and DR via their respective impacts on PCC performance. These analyses are performed on a long (i.e., 135 

month) timescale to assess the impact of real-time decisions on long-term PCC operation. 136 
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3. A sensitivity analysis is performed for the optimal cost and rate of carbon capture. The effect of disturbances 137 

and economic incentives are quantified for the optimal operation of PCC. 138 

4. A new robust RTO scheme is presented along with an update strategy for PCC set points under diurnal 139 

operation. The proposed estimation scheme is also used for uncertainty quantification to yield robust 140 

solutions. This new robust RTO scheme explicitly and simultaneously considers uncertainty in the economic 141 

parameters and in the model parameters of the CO2 capture plant.  142 

This work is structured as follows: section 2 details the formulation for the PE scheme and the robust RTO formulation; 143 

section 3 briefly overviews PCC and introduces assessment metrics and constraints for the proposed scheme; section 144 

4 exhibits the test scenarios on the proposed scheme; and section 5 summarizes the insights gained from this study 145 

and outlines future works. A nomenclature section can be found at the end. 146 

2. Proposed scheme and formulations 147 

RTO is a model-based optimization method that has been proposed in the literature (e.g., Darby et al., 2011) to achieve 148 

the economically optimal steady-state operation of process systems. As the models used for RTO are subject to 149 

uncertainty, the two-step RTO approach is deployed, which continually updates the model via estimation of 150 

parameters. The estimation step, which uses available steady-state process measurements, can address parametric 151 

uncertainties in the phenomenological model parameters and external disturbances. In addition to parametric 152 

uncertainty, uncertainty also manifests through measurement noise. If the system is noisy, this can adversely impact 153 

the fidelity of estimates acquired using the measurements; no practical method or assessment of this issue has been 154 

proposed in the context of PCC. This section presents the general formulation for RTO under uncertainty, a noise-155 

abatement scheme to ensure estimates are indeed reliable, and a robust RTO to address price fluctuations.  156 

 157 
Figure 1: Potential RTO architectures. a) parameter uncertainty considered; previous PCC works omitted green block and no 158 

uncertainty, b) parameter uncertainty considered using the method in section 2.1, c) parameter and price uncertainties 159 
considered using the method in section 2.2. Novel layers considered in this study are shown in red. 160 
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RTO-operated systems work in the manner depicted in Figure 1a. The RTO computes controlled variable set points, 161 

which are passed to the controller. The controller (which could be PID, MPC, NMPC, etc., omitted for brevity) acts 162 

by receiving feedback from the plant in the form of state measurements and regulating the plant towards the RTO-163 

defined set point through the manipulated variables, making the scheme closed loop. On a longer timescale, known as 164 

the RTO period ∆𝑇, the parameter estimation (PE) problem is executed such that uncertain parameters are updated 165 

and the RTO can re-compute the set points under changes in operating conditions.  166 

Generally, RTO is used to optimize process economics such that the process operating conditions can be adjusted as 167 

a response to varying disturbances. The formulation for RTO economic optimization at time 𝑡 is expressed as follows: 168 

min
𝒚"𝒕

𝛷 (𝒙3𝒕)  

𝑠. 𝑡. 
𝒇𝒔(𝒙3𝒕, 𝒚3𝒕, 𝒖𝒕, 𝒅𝒕, 𝜽𝒕) = 𝟎 
𝒈𝒔(𝒙3𝒕, 𝒖𝒕, 𝒅𝒕) ≤ 𝟎 
𝒚𝒍 ≤ 𝒚3𝒕 ≤ 𝒚𝒉		 
𝒖𝒍 ≤ 𝒖𝒕 ≤ 𝒖𝒉		 

(1)  

where 𝛷 ∈ ℝ is the economic objective function to be optimized (minimization of process cost is taken as convention 169 

in this study). 𝒙3𝒕 ∈ ℝ'", 𝒚3𝒕 ∈ ℝ'#, 𝒖𝒕 ∈ ℝ'$,  𝒅𝒕 ∈ ℝ'% and 𝜽𝒕 ∈ ℝ'& are the state predictions, controlled variable 170 

predictions (i.e., set points), manipulated variables, measurable disturbance variables, and uncertain parameters, 171 

respectively, at the solution time 𝑡. 𝒚𝒍 and 𝒚𝒉 ∈ ℝ'# are the lower and upper bounds for the controlled variables, 172 

respectively; similarly, 𝒖𝒍 and 𝒖𝒉 ∈ ℝ'$ are the lower and upper bounds for the manipulated variables, respectively. 173 

𝒇𝒔: ℝ'$ ×ℝ'% ×ℝ'& ⟶ℝ'" ×ℝ'# is a steady-state process model, which maps the inputs, disturbances, and 174 

parameters to the state and controlled variables. 𝒈𝒔:	ℝ'" ×ℝ'$ ×ℝ'% ⟶ℝ'' are any additional inequality 175 

constraints imposed on the RTO problem that must be satisfied.	The outputs (i.e., decision variables) from the RTO 176 

problem are 𝒚3𝒕, such that the controlled variable predictions can be passed to the control layer as set points in the 177 

manner depicted in Figure 1a. The inputs for the RTO problem are the disturbances (𝒅𝒕) and the model parameters 178 

(𝜽𝒕) at time 𝑡; thus, these must be known prior to solving problem (1).  179 

In the context of energy systems, 𝛷 could represent emissions, energy consumption, or a comprehensive economic 180 

function. Moreover, measurable disturbances (𝒅𝒕) may include changes in electricity demands, fuel grades, or 181 

regulatory constraints. The uncertain parameters (𝜽𝒕) can include any experimentally determined phenomenological 182 

constants (e.g., kinetics, thermodynamics, and equilibrium) or unmeasured disturbances (e.g., compositions) that are 183 

built into the model 𝒇𝒔. While the uncertain parameters are inherent to the process model, the unmeasured disturbances 184 
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are external (i.e., a function of factors outside the plant). For PCC, model parameters can include activity coefficients 185 

or reaction kinetic parameters, while unmeasured disturbances can include inlet compositions. In process systems, the 186 

uncertain model parameters and unmeasured disturbances can both be treated as uncertain parameters, thus 187 

necessitating an estimation scheme. 188 

2.1. Low-variance parameter estimation (lv-PE) 189 

As mentioned above, uncertain parameters are treated as inputs to the RTO model. Rather than assuming these 190 

parameters are fixed, they are updated at regular intervals in the two-step RTO implementation. Moreover, there are 191 

many external factors that can be considered as unmeasured disturbances in energy and CO2 capture systems, which 192 

are highly dependent on human behaviour, environmental factors, and process inputs. For instance, energy demands 193 

may vary diurnally (Patrón and Ricardez-Sandoval, 2022a), government production incentives may change (Patrón 194 

and Ricardez-Sandoval, 2020a), or process inputs material grades and types may fluctuate (Hodžić et al., 2020; 195 

Loeffler, 2014). These unpredictable changes may result in changes in flue gas composition, which may be difficult 196 

or inaccurate to measure. These unmeasured disturbances can also be treated as uncertain parameters. The uncertain 197 

parameters 𝜽𝒕 as defined in this work, are time-invariant, i.e., they do not change as an explicit function of the sampling 198 

interval but can vary because of the external factors, e.g., changes in the operating conditions. As such, they are 199 

updated every RTO period ∆𝑇 prior to the set point update. Moreover, the uncertain parameters are bounded such that 200 

they are assumed to materialize within a certain range determined a priori and constraints on their estimates can be 201 

considered in the PE problem to provide a search space. 202 

Problem (1) requires solving a PE problem that provides estimates for 𝜽𝒕 so the RTO problem can be solved at time 203 

𝑡. In the estimation problem 𝒛𝒕 ∈ ℝ'( denotes the process measurements; these are sampled from the plant every 204 

interval ∆𝑡. Measurement samples are required before the parameters can be updated such that statistical properties of 205 

the measurements can be computed. The sample statistics are used to reconcile the plant and the model by formulating 206 

a least-squares optimization problem that minimizes the differences between the plant measurements and the model 207 

measurement predictions. The PE formulation at time 𝑡 is as follows: 208 

min
𝜽𝒕
‖𝒛H𝒕 − 𝒛J𝒕‖𝑲𝒕)*

* 

𝑠. 𝑡. 
𝒇𝒔K𝒙3𝒕, 𝒚3𝒕, 𝒖L𝒕, 𝒅L𝒕, 𝜽𝒕M = 𝟎 
𝒉𝒔K𝒙3𝒕, 𝒖L𝒕, 𝒅L𝒕M = 𝒛H𝒕 
𝒈𝒔K𝒙3𝒕, 𝒖L𝒕, 𝒅L𝒕M ≤ 𝟎 

(2)  
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𝜽𝒍,𝒑𝒆 ≤ 𝜽𝒕 ≤ 𝜽𝒉,𝒑𝒆		 

where	𝒇𝒔, 𝒈𝒔, and all variables are defined as in problem (1). 𝒉𝒔: ℝ'" ×ℝ'$ ×ℝ'% ⟶ℝ'( 	denotes an observer 209 

function between the model state, inputs, measurable disturbances, and predicted measurements. 𝒛J𝒕 and 𝒛H𝒕 ∈ ℝ'( are 210 

the sample-averaged and the model-predicted process measurements, respectively. The PE problem requires a sample 211 

of measurements of size 𝑀, denoted as {𝒛𝒕.𝒊}0123 , which is used to calculated averaged quantities 𝒛J𝒕 	=
4
3
∑ 𝒛𝒕.𝒊3
012 . 212 

𝑲𝒕 ∈ ℝ'(×'( is the measurement covariance matrix, which can be computed from the measurement sample; the 213 

inverse of this matrix is used to weight the objective function, which minimizes the quadratic form of the difference 214 

of sample averages and model predictions. The inverse covariance matrix weighs the objective function such that 215 

measurements with high variance are given less weight and measurements with low variance are given more weight; 216 

it also scales terms such that measurements with different magnitudes can be used within the same objective function. 217 

The quadratic form and inverse covariance weighting are used as the objective in formulation (2) and denoted as 218 

‖	‖𝑲𝒕)*
*. Further, T𝒖L𝒕 =

4
3
∑ 𝒖𝒕.𝒊3
012 U ∈ ℝ'$ and T𝒅L𝒕 =

4
3
∑ 𝒅𝒕.𝒊3
012 U ∈ ℝ'% are the time-averaged process inputs and 219 

measurable disturbances, respectively, which are provided to the PE problem.	𝒖𝒕 and 𝒅𝒕 are readily available as the 220 

control actions and measured disturbances prior to the PE problem are defined by the control scheme and measured, 221 

respectively; thus, they are the inputs to the PE problem (2). Moreover, 𝒙3𝒕 and 𝒚3𝒕 are the state and controlled variables 222 

predictions, respectively, produced by the steady-state model 𝒇𝒔. 𝜽𝒕 are the uncertain parameters, which are to be 223 

estimated (i.e., the decision variables to formulation (2)). 𝜽𝒍,𝒑𝒆 and 𝜽𝒉,𝒑𝒆 are the lower and upper bounds for the 224 

uncertain parameters, respectively, which are user-defined. The uncertain parameters can be classified into two subsets 225 

𝜽 = [𝜽𝒅 𝜽𝒑]7.	 𝜽𝒅 ∈ ℝ
'&% 	 are the uncertain parameters that come from external sources (e.g., unmeasured 226 

disturbance) while 𝜽𝒑 ∈ ℝ
'&+  are parameters that are inherent to the process model (e.g., physical properties); 227 

accordingly, 𝑛8 = 𝑛8% + 𝑛8+.  228 

As mentioned previously, the estimated uncertain parameters (𝜽𝒕) are passed to the RTO formulation in equation (1) 229 

at time 𝑡 as depicted in Figure 1a and can also be passed to a controller with a matching model to the RTO. These are 230 

updated at every RTO period ∆𝑇 such that the plant and model are consistently being reconciled. However, the 231 

estimation scheme requires noisy measurements (𝒛𝒕) that will inherently include noise that may be propagated from 232 

the measurements to the parameter estimates. If the RTO economics are sensitive to these estimated quantities, 233 
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substantial economic losses may occur. In a system such as PCC, this could manifest through increased energy 234 

consumption, resource use, or emissions, which are costly and have prices that accrue over time. Accordingly, the low 235 

variance estimation (lv-PE) method proposed in Patrón and Ricardez-Sandoval (2022b) is deployed herein to abate 236 

the propagation of noise from measurements to estimates.  237 

Algorithm 1: lv-PE 

 Every RTO period ∆𝑇: initialize 𝑗 = 1.	

1.  Acquire 𝑀+ 1 measurement samples, compute 𝑀 parameter estimate samples 
{𝜽\2}0143  using all measurements and formulation (2). 

2.  Remove measurement type 𝑧9 and compute 𝑀 parameter estimate samples 
{𝜽\}0143 . 

a.  If estimate standard deviation 𝝈𝜽,𝒋 < 𝝈𝜽,𝒋;𝟏: remove 𝑧9 from measurement set. 

b.  Else: retain 𝑧9 in measurement set. 

3.  𝑗 ± 1 

a.  If 𝑗 = 𝑛= or observability is lost: go to step 4. 

b.  Else: return to step 2. 

4.  Execute final PE problem with best measurement set, apply to plant. 

5.  Filter plant estimates through tightest 𝝈𝜽,𝒋. 

To summarize, the lv-PE algorithm 1 is used to determine a measurement set that results in low errors in 𝜽𝒕 a priori 238 

to the PE problem. Within the lv-PE algorithm, many PE problems are executed offline via a bootstrapping method 239 

that generates parameter estimate samples that correspond to different measurement sets; this is done by excluding 240 

individual measurements sequentially from formulation (2) as explained in step 2 of algorithm 1. The standard 241 

deviations in estimates for each measurement set are compared to determine which measurements result in the highest 242 

precision; this measurement set is chosen for the actual (i.e., applied to the plant) PE problem. Additionally, lv-PE 243 

uses the statistics acquired by the bootstrap to provide error bounds and filter the estimates 𝜽𝒕 a posteriori to the online 244 

PE problem as shown in step 5 of algorithm 1. Interestingly, lv-PE has yet to be applied to a large-scale system like 245 

PCC; thus, its benefit on this class of systems with many inputs and slow dynamics is unknown. PCC, for which 246 

uncertainty has not been addressed in online economic optimization, is well-suited to lv-PE as it has infrequent set 247 

point changes resulting in long periods at steady state. The measurements acquired at steady state will enable the 248 

repeated data collection required for the bootstrapping that lv-PE entails; as such, high-fidelity parameter estimates 249 

can be computed to operate the system near its true optima. Moreover, the mechanistic PCC has been shown to exhibit 250 

parameter sensitivity (Cerrillo-Briones and Ricardez-Sandoval, 2019; Hughes et al., 2022; Patron and Ricardez-251 
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Sandoval, 2020b). The exchange of information between the lv-PE and PE layers are shown in Figure 1b while the 252 

full algorithm is omitted for brevity and can be found elsewhere (Patrón and Riacrdez-Sandoval, 2022b). 253 

2.2. Robust RTO (rRTO) formulation 254 

In addition to the uncertain parameters (𝜽𝒕), the RTO presented in equation (1) can also manifest uncertainty in the 255 

economics. In this case, the economic function is denoted as 𝛷(𝒙3𝒕, 𝑷𝒕) where 𝑷𝒕 ∈ ℝ> are the economic uncertainties 256 

at time 𝑡. When economic uncertainty occurs, the operator may want to find an operating point that accommodates  a 257 

range of uncertain economic scenarios. For instance, when the economics (𝑷𝒕) and parameters (𝜽𝒕) are frequently 258 

fluctuating, a single solution that works well regardless of the actual realization of uncertainties that happen in the 259 

future may be advantageous (i.e., a robust solution that is also suitable for the short-term future); however, this robust 260 

solution may sacrifice performance if uncertainties remain fixed and an accurate parameter estimation scheme is 261 

available. As mentioned above, previous studies have considered economic robustness in PCC (Wu et al., 2015; Xuan 262 

et al., 2022; Zantye et al., 2019); however, those schemes make decisions in scheduling and planning timescales, not 263 

in real-time. In this economically robust paradigm, one can also address uncertainty in the parameters by bypassing 264 

the PE problem (2) and formulating a problem that is robust to both parameter and economic uncertainties.  265 

To achieve RTO robustness with uncertainty in both economics and model parameters (in contrast to uncertainty in 266 

parameters only as in section 2.2.), the multi-scenario approach can be employed where various model realizations 267 

are solved. This approach has been employed in PCC design (Cerrillo-Briones and Ricardez-Sandoval, 2019) and 268 

control (Patron and Ricardez-Sandoval, 2020b), but never considered in an online real-time economic optimization 269 

context such as RTO. As such, the multi-scenario approach is applied for robust RTO (rRTO) herein at time 𝑡 as 270 

follows: 271 

min
𝒚"𝒕

∑ 𝜔?,9𝛷
',
914 (𝒙3𝒕,𝒋, 𝑷𝒕,𝒋)  

𝑠. 𝑡. 
𝒇𝒔,𝒋K𝒙3𝒕,𝒋, 𝒚3𝒕,𝒋, 𝒖𝒕,𝒋, 𝒅𝒕, 𝜽𝒕,𝒋M = 𝟎                                                                                                                ∀𝑗 ∈ {1,… , 𝑛@} 
𝒈𝒔,𝒋K𝒙3𝒕,𝒋, 𝒖𝒕,𝒋, 𝒅𝒕M ≤ 𝟎                                                                                                                                ∀𝑗 ∈ {1,… , 𝑛@} 
𝒚𝒍 ≤ 𝒚3𝒕,𝒋 ≤ 𝒚𝒉		                                                                                                                                      ∀𝑗 ∈ {1,… , 𝑛@}                                                                                                                                    
𝒖𝒍 ≤ 𝒖𝒕,𝒋 ≤ 𝒖𝒉		                                                                                                                                  ∀𝑗 ∈ {1,… , 𝑛@} 

𝒚3𝒕,𝟏 = ⋯ = 𝒚3𝒕,𝒋 = ⋯ = 𝒚3𝒕,𝒏𝒓 

(3)  

where all variables and functions are the same as in formulation (1) with the additional index 𝑗 ∈ {1,… , 𝑛@}. This 272 

index represents individual scenarios being considered, which generates various instances of the process model; each 273 

instance j represents a realization of the uncertain parameters. Accordingly, the last constraint in formulation (3) 274 
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ensures the set point decision variables for all realizations are equivalent. Through the set point equivalence, a single 275 

set point is found that is optimal for all realizations; this is the set point that is provided to the control layer as shown 276 

in Figure 1c. 277 

To choose which uncertainty combinations are featured in 𝑗, the uncertain parameters are assumed to manifest within 278 

[𝜽𝒕
𝒍,𝒓𝑹𝑻𝑶, 𝜽𝒕

𝒉,𝒓𝑹𝑻𝑶], which represents the lower and upper bounds of the parameter uncertainty region, respectively. As 279 

with the uncertain parameters, the objective function 𝛷 has the dependence on 𝑷𝒕,𝒋, which can manifest within the 280 

region [𝑷𝒕𝒍 , 𝑷𝒕𝒉]. Accordingly, 𝑛@, which corresponds to the index 𝑗, is the number of scenarios considered within these 281 

regions upon discretization of the intervals. Note that the bounds of the regions are indexed in 𝑡 such that they may 282 

expand or contract across RTO periods to accommodate for changing levels of uncertainty. The scenarios encompass 283 

the bounds of the uncertainty region; however, the choice of discretization for the uncertainty regions is a user-defined 284 

choice that balances computational efficiency with robustness. As more scenarios are included, the model size grows 285 

but represents a better approximation of the continuous uncertainty region between the bounds.  286 

Owing to the parameter and economic uncertainty region discretization described above, the economics of the various 287 

model realizations are minimized jointly in the rRTO objective function in equation (3). Each objective function term 288 

is weighed by 𝜔?,9, which corresponds to the probability of a given realization occurring such that ∑ 𝜔?,9 = 1',
914 ; 289 

these must be established a priori based on the underlying statistical distribution that the uncertain parameters and 290 

economics obey. As with the uncertainty regions above, the weights are indexed in 𝑡 to reflect changing realization 291 

probabilities. 292 

While 𝑷𝒕𝒍  and 𝑷𝒕𝒉 must be established based on knowledge of the economic process incentives, the size of the parameter 293 

uncertainty region (defined by 𝜽𝒕
𝒍,𝒓𝑹𝑻𝑶, 𝜽𝒕

𝒉,𝒓𝑹𝑻𝑶) is typically difficult to quantify and is based on process knowledge 294 

rather than a systematic uncertainty quantification method. However, the lv-PE method presented Patrón and 295 

Ricardez-Sandoval (2022b) presents a bootstrap method that acquires data at every sampling period ∆𝑡 to quantify the 296 

parameter uncertainty region via the parameter standard deviations generated therein. This data-driven approach 297 

provides uncertainties that accurately reflect potential parameter realizations while avoiding undue conservatism, 298 

which would hinder performance (e.g., Patrón and Ricardez-Sandoval, 2020b). Without such an uncertainty 299 

quantification method, the solution may be overly or insufficiently robust. As such, the parameter uncertainty region 300 

for the rRTO problem is defined as f𝜽𝒕
𝒍,𝒓𝑹𝑻𝑶, 𝜽𝒕

𝒉,𝒓𝑹𝑻𝑶g = [𝜽L𝒕 −
F
√3
𝝈𝜽𝒕 , 𝜽L𝒕 +

F
√3
𝝈𝜽𝒕] where 𝜽L𝒕, 𝝈𝜽𝒕, and 𝑀 are the 301 
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sample mean, standard deviation and size, respectively, as defined by the algorithm in our previous work (Patrón and 302 

Ricardez-Sandoval, 2022b). As the quantities acquired in the lv-PE procedure are indexed in time 𝑡 to accommodate 303 

for changing levels of uncertainty across RTO periods, these bounds also reflect changing uncertainty. Moreover, 𝜏	304 

allows for the use of confidence intervals to reflect the error tolerance of the user and can be retrieved from a two-305 

sided 𝑡-distribution; this gives statistical significance to the robustness in formulation (3). The parameter uncertainty 306 

region f𝜽𝒕
𝒍,𝒓𝑹𝑻𝑶, 𝜽𝒕

𝒉,𝒓𝑹𝑻𝑶g differs from the PE optimization bounds in section 2.1 as it is acquired from the lv-PE 307 

algorithm while PE bounds are defined based on process knowledge. The rRTO algorithm 2 is summarized below. In 308 

summary, parameter uncertainty bounds are acquired using the statistics from the bootstrapping method in lv-PE; 309 

these quantify the model uncertainty region in step 2 of algorithm 2. Using this uncertainty, a multi-scenario 310 

optimization problem (3) is solved in step 3 such that the RTO is optimal on aggregate across potential parameter 311 

realizations and robust set points can be conveyed to the PCC plant. 312 

Algorithm 2: rRTO 

 Every RTO period ∆𝑇. Choose 𝑛@ and 𝜏.	

1.  Execute lv-PE algorithm 1 and acquire 𝜽L𝒕 and 𝝈𝜽𝒕 	for most precise measurement 
set.	

2.  Construct uncertainty region as f𝜽𝒕
𝒍,𝒓𝑹𝑻𝑶, 𝜽𝒕

𝒉,𝒓𝑹𝑻𝑶g = [𝜽L𝒕 −
F
√3
𝝈𝜽𝒕 , 𝜽L𝒕 +

F
√3
𝝈𝜽𝒕]. 

3.  Discretize uncertainty region according to 𝑛@ and embed into problem (3) 

4.  Solve rRTO problem and apply to plant. 

By bypassing the PE step in problem (2) and only conveying parameter bounds to problem (3), the rRTO formulation 313 

finds robust solutions that account for economics fluctuations and parameters uncertainties. Accordingly, the rRTO 314 

formulation (3) can be deployed instead of the hierarchical approach that uses formulations (1) and (2). This exchange 315 

of information is shown in Figure 1c. 316 

3. Scheme implementation and assessment 317 

A pertinent application of the methods outlined in previous sections is PCC; a technology whose global industrial 318 

adoption is currently limited by its unfavourable process economics. As depicted in Figure 2, the PCC plant consists 319 

of two main units: an absorber and a stripper. The absorber receives flue gas and a lean (i.e., without CO2) amine 320 

solution in a counter-current arrangement such that they contact and incite a reactive absorption mechanism. The gas 321 

without CO2 is vented from the absorber while the rich (i.e., with CO2) solvent passes to the stripper via a heat 322 

exchanger. The stripper requires a reboiler to further heat the rich solution and separate the CO2 from the amine along 323 
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the stripper column. The CO2 is further purified through a condenser as shown in Figure 2, whereby any evaporated 324 

solution is removed and recycled to the stripper. In the bottom of the column, purified amine solvent is recycled to the 325 

absorber section via a buffer tank where makeup solvent and water may be added. 326 

 327 

Figure 2: PCC plant. Blue font denotes controlled variables, purple font denotes the uncertainties, green font denotes 328 
manipulated variables, and red font denotes disturbance variables.  329 

RTO and the estimation schemes require a model to formulate their respective optimization problems. Herein, a 330 

mechanistic model for a PCC absorber section, denoted 𝒇𝒔, is used to test the present estimation approaches is used; 331 

this model is outlined in the supplementary information and was validated in Patrón and Ricardez-Sandoval (2022a). 332 

The PCC model requires manipulated variables as inputs. These are defined as the vector 𝒖 =333 

f𝐹H,0'IJK 𝐹3LM
NOP> 𝐹Q.R

NOP> 𝑄STTH 𝑄@UJg
7
, whereby the flowrate from tank to absorber is regulated through a variable-334 

speed pump, the makeup flowrates are regulated using valves, the cooling duty is regulated through cooling water 335 

flowrate to a coil in the tank, and the reboiler duty is regulated through steam pressure to the reboiler coils. The 336 

manipulated variables are used to regulate the controlled variables, which are denoted as 𝒚 =337 

[%𝐶𝐶 𝐶3LM?I'O ℎ?I'O 𝑇?I'O]7. The controlled variables include the carbon captured rate, the MEA concentration 338 

in the tank, the tank liquid level, and the tank temperature. The nominal values for the manipulated variables and 339 

controlled variables are 𝒖𝒏𝒐𝒎 = [32.17	𝑚𝑜𝑙/𝑠 0.0002	𝑚𝑜𝑙/𝑠 0.2	𝑚𝑜𝑙/𝑠 −139,000	𝑊 153,500	𝑊]7 and 340 

𝒚𝒏𝒐𝒎 = [96.23% 4847	𝑚𝑜𝑙/𝐿 1	𝑚 314	𝐾]7, respectively. 341 

As noted earlier, uncertain parameters can be segmented into physical properties and unmeasured disturbances, which 342 

will be assessed individually through their respective estimates on the RTO scheme.  In the PCC plant, both the flue 343 

Flue gas: 
𝐹𝑔
𝑓𝑙𝑢𝑒 , 𝑦𝐶𝑂2

𝑓𝑙𝑢𝑒

Vent gas: 
%𝐶𝐶, 𝑃𝑆𝐶𝐶

Rich amine: 𝑃𝑠𝑎𝑙𝑒𝑠

Lean amine: 𝐹𝑙 ,𝑖𝑛𝑎𝑏𝑠

MEA 
makeup: 
𝐹𝑀𝐸𝐴
𝑚𝑘𝑢𝑝

Water 
makeup:
𝐹𝐻2𝑂
𝑚𝑘𝑢𝑝

Cooling 
duty: 𝑄𝑐𝑜𝑜𝑙

Reboiler duty: 
𝑄𝑟𝑒𝑏 , 𝑃𝑠𝑡𝑒𝑎𝑚

CO2
product

Buffer tank:
ℎ𝑡𝑎𝑛𝑘 , 𝑇𝑡𝑎𝑛𝑘

, 𝐶𝑀𝐸𝐴
𝑡𝑎𝑛𝑘

Absorber Stripper

Heat 
exchanger

Condenser

Recycle

𝑖 = {𝑀𝐸𝐴, 𝐶𝑂2 , 𝐻2𝑂,𝑁2}

𝛾𝑀𝐸𝐴 , 𝛾𝐶𝑂2 ,
𝛾𝐻2𝑂	
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gas flowrate and CO2 content entering the absorber are typical disturbances. Both disturbances are typically 344 

measurable in power plants (e.g., via a flowmeter and a katharometer, respectively). Although the accuracy of the 345 

katharometer is generally adequate for monitoring of emissions (e.g., ±0.5	𝑚𝑜𝑙% in absolute terms; ABB, 2003), it 346 

may not be adequate for RTO where the optimum is sensitive to the carbon content of the flue gas. Accordingly, an 347 

estimation scheme is proposed for the flue gas CO2 and H2O concentrations (i.e., 𝜽𝒅 = f𝑦XR.
YHPU 𝑦Q.R

YHPUg
7
) while flue 348 

gas flowrate is assumed to be a measured disturbance (i.e., 𝒅 = f𝐹2
Zg7).  The estimated unmeasured disturbances are 349 

treated as uncertain parameters (𝜽𝒅) and provided to the RTO layers such that high-fidelity composition estimates are 350 

generated and lead to high-fidelity set points. Only these two component fractions are taken as disturbances as the 351 

nitrogen fraction is fixed since it is inert in the upstream combustion process, and the MEA is assumed to be 352 

unevaporable. The nominal values for the measurable and unmeasured disturbances are 𝒅𝒏𝒐𝒎 = [4.012	𝑚𝑜𝑙/𝑠]7 and 353 

𝜽𝒅,𝒏𝒐𝒎 = [0.175	𝑚𝑜𝑙/𝑚𝑜𝑙 0.025	𝑚𝑜𝑙/𝑚𝑜𝑙]7, respectively. Moreover, activity coefficients are assumed to be the 354 

cause of the parametric uncertainties in the PCC model and, as such, are considered uncertain parameters (i.e., 𝜽𝒑 =355 

[𝛾3LM 𝛾XR. 𝛾Q.R]7). While these parameters are assumed to be constant in the process model (i.e., time-invariant), 356 

their true values are not precisely known and are designed to capture non-idealities in fluid behaviour, which may 357 

vary over time as the operation of PCC is highly nonlinear. Accordingly, it is important to update the parameters on a 358 

regular basis as operating conditions change. The effect of uncertainty via the activity coefficients has been previously 359 

explored in the context of PCC design (Cerrillo-Briones and Ricardez-Sandoval, 2019) and control (Patron and 360 

Ricardez-Sandoval, 2020b); however, it has not been addressed in RTO. The nominal values for the uncertain 361 

parameters are 𝜽𝒑,𝒏𝒐𝒎 = [0.381 0.677 0.974]7).  362 

This PCC model was implemented in the Pyomo (Hart et al., 2011) modelling environment for Python. The absorber 363 

column was discretized with ten backward finite difference elements in the axial domain (i.e., 𝑛YU= = 10); this 364 

discretization was chosen such that the models yielded high-accuracy predictions while remaining relatively quick to 365 

solve. The discretization scheme results in a model size of 116 states and 1,977 algebraic variables. The model is 366 

solved using the interior-point method IPOPT (Wächter and Biegler, 2005) on an Intel core i7-4770 CPU @ 3.4 GHz 367 

processing unit.  368 

The model presented herein was validated across a wide range of operating conditions in our previous study (Patrón 369 

and Ricardez-Sandoval, 2022a) and found to have an error across all model outputs of < 4% with respect to 370 
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experimental data and an error of < 8% with respect to the implementation of the same model by Harun et al. (2012). 371 

The reader is asked to refer to this work for further details on model validation.  372 

3.1. RTO economics and constraints 373 

The RTO objective function in formulation (1) for the PCC system used in this study was first introduced in Patrón 374 

and Ricardez-Sandoval (2022a) and uses the steady state model 𝒇𝒔 also introduced therein, which is presented in the 375 

supplementary material for brevity. The economic objective is defined as follows: 376 

𝜙 = 𝑃3LM�̇�3LM
NOP> + 𝑃KIHUK(�̇�XR.,0'

Z − �̇�XR.,TP?
Z ) + 𝑃XR.�̇�XR.,TP?

Z + 𝑃K?UIN𝑄@UJ (4)  

where 𝑃3LM, 𝑃KIHUK, 𝑃XR.and 𝑃K?UIN are the MEA makeup (i.e., fresh MEA added to the system)  price, the CO2 sales 377 

price, the social cost of carbon (SCC), and the price of steam, respectively, which are the most important economic 378 

aspect of PCC. These are multiplied by their corresponding mass flowrates (�̇�) or duties (𝑄). These prices are outlined 379 

in Table 1 as proposed in our previous work (Patrón and Ricardez-Sandoval, 2022a): 380 

Table 1: Prices used in RTO and energy penalty assessment. 381 

Term Value Source 

MEA (𝑃3LM) 2420	$𝐶𝐴𝐷/𝑡𝑛	𝑓𝑟𝑒𝑠ℎ	𝑀𝐸𝐴 Straathof and Bampouli (2017) 

Sales (𝑃KIHUK) −50	$𝐶𝐴𝐷/𝑡𝑛	𝐶𝑂*	𝑠𝑜𝑙𝑑 Nwaoha and Tontiwachwuthikul (2019) 

CO2 (𝑃XR.) 176	$𝐶𝐴𝐷/𝑡𝑛	𝐶𝑂*	𝑟𝑒𝑚𝑜𝑣𝑒𝑑 Nordhaus (2017) 

Steam (𝑃K?UIN) 0.065	$𝐶𝐴𝐷/𝑘𝑊ℎ Karimi et al. (2011) 

Electricity (𝑃UHUS) 0.115	$𝐶𝐴𝐷/𝑘𝑊ℎ OEB (2021) 

As established in previous works (e.g., Danaci et al., 2021), the steam requirements of the PCC system comprise much 382 

of the operating cost while the solvent requirements are also significant. The steam pressure in a pilot-scale PCC 383 

reboiler is typically 135-150 kPa (Artanto et al., 2011) and the price of steam to PCC is denominated in terms of kWh 384 

as it represents the main energy term to the process. In contrast, condenser cooling water and makeup process water 385 

costs are orders of magnitude smaller, thus they are not considered in the economic function (4). Moreover, the SCC 386 

is used to consider the negative externalities (e.g., effects on health and environmental outcomes) of carbon emission, 387 

thus further incentivizing capture by using a more stringent cost over a cheaper carbon tax. Additionally, CO2 sales 388 

consider a potential carbon economy in which captured product can be sold for profit. To further constrain formulation 389 

(1), the following bounds are imposed on the controlled variables: 390 
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0 ≤ %𝐶𝐶 ≤ 100 

3000 ≤ 𝐶3LM?I'O	(𝑚𝑜𝑙/𝐿) ≤ 6000 
0.05 ≤ ℎ?I'O(𝑚) ≤ 1.95 
300 ≤ 𝑇?I'O	(𝐾) ≤ 345 

(5)  

where the %𝐶𝐶 constraint ensures the model prediction stays within a physically realistic range, the 𝐶3LM?I'O indirectly 391 

constrains the reboiler heat duty and MEA makeup that affect the MEA concentration in the buffer tank, the 𝑇?I'O 392 

ensures the absorber feed temperature is within typical operating limits, and the ℎ?I'O constraint ensures the buffer 393 

tank does not empty or overflow. 394 

Likewise, the following bounds are imposed on the manipulated variables to ensure that the control variables 395 

corresponding to the steady-state set points are within the physical limits of the instrumentation: 396 

0 ≤ 𝐹H,0'IJK	(𝑚𝑜𝑙/𝑠) ≤ 100 

0 ≤ 𝐹3LM
NOP>	(𝑚𝑜𝑙/𝑠) ≤ 1 

0 ≤ 𝐹[I?U@
NOP>	(𝑚𝑜𝑙/𝑠) ≤ 1 

−500,000 ≤ 𝑄STTH	(𝑊) ≤ 0 

(6)  

Equations (5) and (6) constrain the RTO feasible search space and keep the PCC operation within realistic operational 397 

limits. Moreover, the foremost factor motivating the deployment of RTO is the process economics; thus, each scheme 398 

and scenario will be analyzed by their cumulative cost 𝐶($𝐶𝐴𝐷) across 𝑁 RTO periods tested, defined as follows: 399 

𝐶\XX = ∆𝑇�𝜙0

]

012

 (7)  

where 𝜙0($𝐶𝐴𝐷/ℎ𝑜𝑢𝑟) is the price of operating the PCC according to equation (4) at every RTO period 𝑖. 400 

In addition to considering the cost of the PCC system, the effect that the reboiler has on the upstream power plant 401 

must also be accounted for. The reboiler requires steam that comes from the power plant, resulting in a reduction of 402 

the power generation capacity and high cost (Zhang et al., 2017). This is accounted for by considering the cumulative 403 

energy penalty 𝐶U'U@Z^($𝐶𝐴𝐷) across 𝑁 RTO periods tested in each scenario, defined as follows: 404 

𝐶U'U@Z^ = ∆𝑇�𝑄@UJ,0(𝑃UHUS − 𝑃K?UIN)𝜂
]

012

 (8)  

where 𝑄@UJ,0(𝑘𝑊) denotes the reboiler duty, 𝑃UHUS and 𝑃K?UIN($𝐶𝐴𝐷/𝑘𝑊ℎ) denote the electricity price rate and the 405 

steam price rate, respectively, while 𝜂 = 0.4 (Mac Dowell and Shah, 2013) denotes the efficiency of converting steam 406 

to electricity in the power plant. The difference between energy sales and steam prices corresponds to the energy price 407 
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markup upon sale. These are multiplied by the reboiler duty through an efficiency factor to quantify the profit loss 408 

incurred by using the steam in the PCC reboiler instead of using it in the power plant turbines. 409 

In addition to quantifying the potential economic and energy effects of the RTO. The environmental effects are also 410 

of utmost importance. To do this, the cumulative mass of CO2 emitted 𝑚XR.
UN0??U_(𝑡𝑛) over 𝑁 RTO operating periods 411 

is calculated as follows: 412 

𝑚XR.
UN0??U_ = ∆𝑇𝑀XR.�𝐹Z,0`U'?𝑦XR.,0

`U'?
]

012

 (9)  

where 𝐹Z,0`U'?(𝑚𝑜𝑙/ℎ𝑟) and 𝑦XR.,0
`U'?(𝑚𝑜𝑙/𝑚𝑜𝑙) are the vent gas flowrate and CO2 fraction for each RTO period, 413 

respectively, and 𝑀XR.(𝑡𝑛/𝑚𝑜𝑙) is the molar mass of CO2. In addition, an influencing factor in the PCC economics 414 

is the amount of MEA makeup added in the tank (Patrón and Ricardez-Sandoval, 2022a). Accordingly, this is also 415 

considered in the assessment of the RTO across 𝑁 RTO periods tested in each scenario, i.e.,  416 

𝑚3LM
NOP> = ∆𝑇𝑀3LM�𝐹3LM,0

NOP>
]

012

 (10)  

where 𝑚3LM
NOP>(𝑡𝑛) is the amount of makeup MEA used and 𝑀3LM(𝑡𝑛/𝑚𝑜𝑙) is the molar mass of MEA. 417 

3.2. PE measurements and constraints 418 

The present analysis assumes that only 12 measurements are available for estimation, which are denoted as 𝒛 =419 

f𝑪𝑯
𝒈7 𝑪𝟎𝒍

7 𝑇Z,2 𝑇Z,Q 𝑇H,2 𝑇H,Qg
7
. These include the liquid (𝑪𝟎𝒍 ) and gas (𝑪𝑯

𝒈 ) compositions and temperatures at 420 

the bottom and top of the absorber column. Only a single set of gas and liquid absorber concentration measurements 421 

along the absorber height are used; thus, it is assumed that these are accessible at the column top and bottom outlets, 422 

respectively. This is done as sampling of inlet and outlet streams is more practical than sampling along the column 423 

height; moreover, good estimate quality was observed with these sampling locations (Patrón and Ricardez-Sandoval, 424 

2022a). The sample size is assumed to be 𝑀 = 40 such that the estimation schemes can provide good estimates while 425 

not incurring any delays in the execution of the RTO. This sample size was chosen based on preliminary simulations 426 

and ensures significant measurement averaging occurs such that increasing beyond this size makes little difference. 427 

Conversely, significantly smaller sample sizes may allow noise propagation as they do not benefit from averaging 428 

effects. In addition to these measurements, the following bounds are also given to the PE problem (2) in the case of 429 

uncertain model parameters (𝜽𝒑): 430 
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0 < 𝛾3LM, 𝛾XR. , 𝛾Q.R < 2 (11)  

The upper bound of equation (11) is chosen as to match the activity coefficient range for mixed amine solutions loaded 431 

with CO2 presented in Kaewsichan et al. (2001). Furthermore, the following constraints are included in the DE 432 

problem (2) in the case of unmeasured disturbances (𝜽𝒅): 433 

𝑦XR.
YHPU + 𝑦Q.R

YHPU = 0.2 

0 < 𝑦XR.
YHPU , 𝑦Q.R

YHPU < 0.2 
(12)  

The former fixes the total amount of CO2 and water in the flue gas (since nitrogen is assumed to be 80	𝑚𝑜𝑙% of the 434 

flue gas), while the latter provides upper and lower bounds for the mole fractions. Equation (12) encompasses the 435 

potential carbon dioxide fraction of typical PCC power plants (Danaci et al., 2021). The lower and upper bounds for 436 

the PE problems establish a finite estimation search space and are not included in the RTO economic optimization 437 

problem as the disturbances and parameters are not decision variables in the RTO formulation. 438 

4. Results and discussion 439 

The formulations outlined in section 2 are implemented in the PCC system described in section 3. Measurement noise 440 

is inserted to the estimation scheme via the steady-state measurement samples {𝒛𝒕.𝒊}0123  and is assumed to be additive 441 

zero-mean Gaussian noise with a standard deviation of 5% of the nominal measurement values (i.e., 442 

𝒩(0, (0.05𝒛𝒏𝒐𝒎)*), such that the noise can substantially affect estimate quality. 𝒛𝒏𝒐𝒎 is the measurement vector 443 

corresponding to the nominal operating conditions outlined in section 3.2.  444 

Each scenario studied herein features different assumptions regarding uncertainty, thus various operating schemes are 445 

deployed. The sensitivity of the cost-optimal process operation is studied in Scenario A assuming no uncertainty. 446 

Scenario B features model (parametric uncertainty) only, while Scenario C jointly considers model and economic 447 

uncertainty. Accordingly, the suitable schemes in section 2.1. and section 2.2. are assessed in Scenario B and Scenario 448 

C, respectively, through their effects on a long (months) timescale according to the metrics defined in section 3. 449 

Moreover, the proposed methods are compared to alternative operating schemes, these include: our previous work 450 

(Patrón and Ricardez-Sandoval, 2022a), which omitted uncertainty; and a comparison to DR (Özyurt and Pike, 2004), 451 

which lv-PE has not been tested against previously. 452 

4.1. Scenario A: Sensitivity of cost-optimal operation  453 
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Power plants often follow a diurnal schedule whereby the electricity produced observes a time-of-use (TOU) pricing 454 

model. TOU works such that price of energy is changed over the day so that providers can disincentivize excessive 455 

consumption through periods of peak demand.  456 

 457 
Figure 3: TOU variation in steam price (top), SCC and carbon sales (bottom). Cyan dotted lines denote update times for 458 

Scenario C. 459 

As mentioned in section 3.1., the main cost of PCC has been found to be the energy consumption, which is manifested 460 

in steam fed to the reboiler. Accordingly, the price of steam is varied in the same TOU manner as electricity (i.e., since 461 

the steam could otherwise be used for power generation). Consumer pricing fluctuation amplitudes and timings were 462 

retrieved from the Ontario Energy Board (2021) for a 24-hour summer cycle. These amplitudes were incorporated 463 

into the steam price reported in Karimi et al. (2011). As such, electrical losses via steam consumption to the PCC plant 464 

vary in the same manner as electricity price to consumer; this is depicted in Figure 3 (top). Moreover, SCC (Nordhaus, 465 

2017) and carbon sales rates (Nwaoha and Tontiwachwuthikul, 2019) were also assumed to vary in the same schedule 466 

and amplitude with high, medium, and low values taken from the literature (Figure 3, bottom). These are scheduled 467 

to incentivize removal during on-peak hours of high demand, with lesser incentives in off-peak hours of low demand. 468 

While current carbon economies do not consider live pricing of sales and tax rates, a future integrated carbon economy 469 

is likely to deploy these mechanisms to regulate the production of carbon. This can be done similarly to how electricity 470 

prices are set according to the TOU generation capacity (e.g., the steam price in the top pane of Figure 3). 471 

A sensitivity analysis was performed for the cost-optimal PCC operation under variation of the disturbances of flue 472 

gas inlet flowrate (𝐹2
Z) and flue gas CO2 content (𝑦XR.

YHPU). This is done as previous studies only consider a limited set 473 
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of disturbance realizations, which are far more limited than the ranges typically observed in the literature (e.g., Danaci 474 

et al., 2021). The flue gas flowrate is assumed to vary within a symmetric ±15% interval centred around its nominal 475 

value (reported in section 3), i.e., 𝐹2
Z = 𝛼𝒅𝒏𝒐𝒎 where 𝛼 ∈ [0.85,1.15]. Furthermore, the flue gas CO2 content can 476 

manifest between the range 𝑦XR.
YHPU ∈ [0.12,0.175]. In addition to variation of disturbances, the prices can manifest at 477 

the three levels (off, mid, on) corresponding to TOU as depicted in Figure 3. For this scenario, the uncertain mode 478 

parameters are assumed to be perfectly known and manifesting at their nominal values as reported in section 3. Figure 479 

4 shows the sensitivity analysis performed of the cost optimal operation. 480 

Generally, a trend of increasing and sensitive capture rates is observed with increasing flue gas CO2 content as 481 

evidenced in the first row of Figure 4. These increased optimal rates are coupled with a decreased process cost (second 482 

row of Figure 4) as the PCC process can operate more efficiently with a more concentrated inlet (i.e., a more 483 

concentrated flue gas has similar effect to a more concentrated solvent). In contrast, lower removal rates are coupled 484 

with lower removal costs as the flue gas flowrate increases; however, the sensitivity to this disturbance is significantly 485 

less than the sensitivity to flue gas composition. This is owed to less efficient operation as increased throughput of 486 

flue gas requires a commensurate increase in amine concentration or reboiler duty, which is economically 487 

disadvantageous. Accordingly, in situations of higher flue gas flowrates, the optimal operating policy is to settle for 488 

low removal to minimize cost. An exception to the behaviours listed above occurs for the process cost under the off-489 

peak regime (bottom-left pane of Figure 4). Herein, it is observed that low flue gas compositions and flowrates result 490 

in lower costs and there is little sensitivity to either disturbance. This occurs due to the weak economic incentives in 491 

the low carbon and energy costs. Accordingly, the off-peak operating regime sees only small changes in optimal 492 

pricing regardless of the disturbance combination observed. 493 
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 494 
Figure 4: Cost-optimal rate of carbon capture (first row) and process cost (second row) under varying disturbances and TOU. 495 

The columns represent the TOU prices. 496 

With respect to the TOU economic incentives, the off-peak prices result in the lowest overall capture rates with 497 

middling process costs. This occurs as the off-peak prices favour conservative operation due to low carbon costs 498 

(Figure 3); again, the off-peak prices result in decreased cost sensitivity to disturbances. This implies that the energy 499 

price dominates the operation during off-peak hours whereby low capture is favorable as there is little removal 500 

incentive and high energy detriment from excessive removal. In contrast, on-peak prices result in high capture rates 501 

with the highest costs due to the increased carbon and energy prices. In this case, reasonably high capture is achieved 502 

despite the high energy prices because the carbon prices are dominant. However, the highest removal rates and lowest 503 

prices in the TOU pricing scenarios are achieved using mid-peak incentives, which balance removal and process costs 504 

with middling carbon and energy pricing. The mid-peak incentives have unit costs that are sufficiently low to warrant 505 

high removal rates while not being low enough to drastically increase reboiling or makeup (Figure S1, Supplementary 506 

information).  507 

The optimal price and rates of carbon capture are sensitive to both upstream disturbances and the economic incentives 508 

on the process; this is reflected in an 6.1% range in removal rates and a 43,000	$𝐶𝐴𝐷/𝑦𝑟 range in annualized process 509 

cost (see the corresponding colour bars in Figure 4). Accordingly, variation and uncertainty in these disturbances and 510 

prices will have a significant effect on the operation of PCC; thus, are suitable for parameter estimation and robust 511 

optimization in the forthcoming sections.  512 
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4.2. Scenario B: Estimation of flue gas carbon content (𝜽𝒅) 513 

Flue gas compositions to the PCC plant may vary with respect to time as feedstock to the upstream power plant varies 514 

in grade (e.g., changes in the type of coal being used). Moreover, this variation is expected to occur in power plants 515 

that employ cofiring (Hodžić et al., 2020; Loeffler, 2014), whereby various fuel types are used within the same power 516 

unit. This necessitates an operating scheme that is flexible to different flue gas composition profiles such that the 517 

process economics are optimized despite variation. 518 

Scenario B considers a parameter estimation approach as outlined in section 2.1., whereby the uncertain parameters 519 

are provided to the RTO and control models. To explore the effect of measurement noise on scheme effectiveness, 520 

this scenario compares four RTO implementations: 1) RTO with a standard PE and no noise-abating step (denoted 521 

PE); this represents the scheme deployed in our previous work (Patrón and Ricardez-Ssndoval, 2022a) with an 522 

additional PE layer, 2) RTO with traditional least-squares DR (Özyurt and Pike, 2004) (denoted DR-PE), 3) RTO with 523 

low-variance PE (Patrón and Ricardez-Ssndoval, 2022b) considering information content and estimation filters 524 

(denoted lv-PE), and 4) RTO with knowledge of the true value of the CO2 content (denoted TV). The latter of these 525 

cases is unrealistic as composition measurements of the flue gas are difficult to perform online in practice; however, 526 

it provides an upper bound to economic performance as it results in an RTO model with no mismatch from the plant.   527 

The PE/RTO is run for 100 RTO periods of ∆𝑇 = 8	ℎ𝑜𝑢𝑟𝑠 (i.e., 33	𝑑𝑎𝑦𝑠) as to have a large sample of RTO executions 528 

and sufficiently long RTO periods. The main unmeasured disturbance/estimated parameter (𝜽𝒅 as defined in section 529 

3.2) is the flue gas CO2 content (𝑦XR.
YHPU), which is varied for each RTO period. Danaci et al. (2021) provides a 530 

breakdown of the flue gas CO2 compositions for different fuel types/grades; based on the range reported therein, the 531 

flue gas CO2 molar fraction was sampled from a uniform distribution between 0.12 and 0.175	𝑚𝑜𝑙/𝑚𝑜𝑙 (i.e., 532 

𝑦XR.
YHPU~𝒰(0.12,0.175)). The PE deployed in this scenario must estimate this content such that it can provide the RTO 533 

and control models with accurate information regarding the disturbance. The results from these implementations are 534 

shown in Figure 5. 535 
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 536 
Figure 5: Cumulative a) PCC cost, b) energy penalty, c) CO2 emissions, d) fresh MEA used for scenario B. 537 

As illustrated in Figure 5a, the cumulative PCC cost, as defined in equation (7), over the 100 RTO periods tested is 538 

significantly more expensive for the PE and DR-PE than the lv-PE (~39% and ~25% more expensive, respectively). 539 

With respect to the TV case, the PE, DR-PE and lv-PE experience economic losses of ~50%, ~34%, and ~8%, 540 

respectively; as such, the lv-PE is the most cost-effective, followed by the DR-PE, and the PE. Comparing the 541 

benchmark DR-PE with the proposed lv-PE in Figure 5a, it can be observed that the two schemes indeed have similar 542 

performance until period 55 whereby the economic profiles diverge. This is owed to an erroneous parameter estimate, 543 

which was discarded by the lv-PE scheme by the filter bounds. In contrast, this does not occur with the DR-PE scheme, 544 

leading to an expensive period of operation. Moreover, the estimation schemes make subtle difference in abating 545 

energy penalties as in Figure 5b (in fact, the TV case and lv-PE incur a slightly higher energy penalty). This is likely 546 

the main driver of decreased emissions (i.e., increased removal) observed in Figure 5c, whereby higher reboiler duty 547 

leads to increased removal. 548 

In contrast, as shown in Figure 5c and d respectively, the CO2 emissions and MEA consumption can vary substantially 549 

depending on the scheme used. The emissions over the 100 RTO periods tested are ~115%, ~137%, and ~70% 550 

higher when using the PE, DR-PE, and lv-PE, respectively, over the TV case. This constitutes another improvement 551 
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of the lv-PE and a deterioration of the DR-PE with respect to the PE case. While the lv-PE performs better than the 552 

PE and DR-PE, it is worse than the measurable disturbance case. This suggests that the CO2 emissions predictions 553 

generated by the PCC model are highly sensitive to uncertainties in flue gas composition, which is reasonable as the 554 

upstream composition will directly impact the outlet compositions. Moreover, the DE/RTO and DR-PE/RTO require 555 

a significantly higher amount of fresh MEA that the lv-PE and TV cases. Indeed, this appears to be the main factor 556 

elevating the PCC cost in the PE and DR-PE schemes as steps in the MEA consumption depicted in Figure 5d align 557 

with steps in cost depicted in Figure 5a. As mentioned above, these are likely caused by outlier parameter estimates 558 

in the PE implementation, which are filtered by the lv-PE such that an unnecessary makeup is not used. This finding 559 

also aligns with our previous work, where the MEA makeup was shown to be a major source of PCC cost. In addition 560 

to the cumulative plots, the average parameter error across the three estimation schemes tested are ~30%, ~35%, and 561 

~40% for the lv-PE, DR-PE, and PE schemes, respectively. Notably, the limitations of our previous work are shown 562 

in the PE case, whereby its economic and emissions performance are worse under uncertainty (~42% and ~45% 563 

additional deterioration with respect to the true parameter case, respectively). 564 

As reported in our previous work (Patrón and Ricardez-Ssndoval, 2022a) the averaged CPU time for the RTO is 565 

4.33	𝑠. Additionally, the mean PE CPU time as determined in this study is 4.45	𝑠. As such, RTO and PE models are 566 

fit for online use. 567 

4.3. Scenario C: rRTO under diurnal economic variation and activity coefficient (𝜽𝒑) uncertainty  568 

In this scenario, the TOU pricing model in Figure 3 was considered to formulate an update strategy for the PCC that 569 

considers prices that vary at irregular intervals. Scenario C considers the rRTO update strategy described in section 570 

2.2. and is assessed across 100	𝑑𝑎𝑦𝑠	worth of operation. The cyan vertical dotted lines in Figure 3 denote RTO update 571 

times; 12-hour periods lengths were chosen as the long and expensive transients observed in Patrón and Ricardez-572 

Sandoval (2022a) prohibit frequent set point updating, especially in cases where prices vary quickly. The update 573 

strategy assumes the RTO is executed at the beginning of the off-peak night operation (19: 00) as shown in Figure 3, 574 

whereby the RTO can exploit the constant low overnight price. The second update occurs at the beginning of daytime 575 

(7: 00), which begins a succession of price changes to mid-peak (denoted 𝑚) and on-peak (denoted 𝑜) consumption 576 

levels. Both strategies are subject to the economic fluctuations (𝑷𝒕) depicted in Figure 3 as well as uncertainty in 𝜽𝒑 577 

(i.e., the thermodynamic activity coefficients as described in section 5.2.).  578 
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Three contrasting RTO schemes were compared. An RTO with knowledge of the true parameter values (labelled 579 

tRTO) was implemented and uses a “live” price (i.e., the price at the time at which the RTO is executed). The tRTO 580 

is unrealistic since the true parameter values are never known; however, it provides an upper bound for the system’s 581 

performance. Moreover, a “naïve” update strategy (labelled nRTO henceforth) was also deployed, which updates the 582 

RTO set point based on the live price and updates the parameters using the two-step approach without making use of 583 

the lv estimation formulation (this is equivalent to Patrón and Ricardez-Ssndoval (2022a) with an added PE layer). 584 

Lastly, a robust strategy (labelled rRTO henceforth) updates the set point based on the expectation that the price will 585 

vary a few times in the coming 12-hour period and that the uncertain parameters manifest with a uniform distribution. 586 

Accordingly, the rRTO formulation in equation (3) is deployed with the following weights: 587 

𝜔?,O =
𝑡O

∑ 𝑡O
'+
O14

×
𝑛>
𝑛@

 (13)  

where 𝑡O denotes the operating length associated with each economic scenario 𝑘 ∈ {1,… , 𝑛>} and 𝑛@ is the total 588 

number of parameter scenarios. The operating times (𝑡O) weigh the scenarios in the objective function such that prices 589 

which are operated at for longer are prioritized; these timings known a priori as TOU timings schedules are pre-590 

determined by the Ontario Energy Board (2021). In the daytime period where the costs vary within a short amount of 591 

time, this formulation is deployed such that a single operating point that is robust to the prices is used rather than using 592 

an operating point that is optimal for a short period of time and subsequently suboptimal. To restrict the model size 593 

when using the multi-scenario formulation, the uncertain parameters are assumed to manifest at their 95% confidence 594 

interval lower (𝜽𝒑,𝒕𝒍 ) and upper (𝜽𝒑,𝒕𝒉 ) bounds as defined in section 2.3.  Respective scenarios used in the formulation, 595 

denoted as 𝑙 and ℎ, are shown in Table 2. These bounds are determined by the lv-PE algorithm using the parameter 596 

estimate statistics prior to the execution of the rRTO and are updated at new operating points to accommodate varying 597 

levels of uncertainty. Moreover, the uncertain economics are also assumed to manifest at the mid-peak (𝑚) and on-598 

peak (𝑜) prices when performing the daytime set point update, respectively 𝑷𝒕𝒍 = 𝑷𝒕𝒎 and 𝑷𝒕𝒉 = 𝑷𝒕𝒐, as shown in Figure 599 

3. Table 2 shows the economic scenarios considered in the present rRTO. 600 

The RTO-operated system is simulated for 100	𝑑𝑎𝑦𝑠 to generate costs/savings of the deployment of the rRTO with 601 

respect to the RTO; these are shown in Table 3 for clarity (plots can also be found in Figure S2, Supplementary 602 

information). 603 
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Table 2: Realization in uncertain parameters and economic function for rRTO. 604 

Uncertainty S1 S2 S3 S4 S5 S6 S7 S8 S9 S1
0 

S1
1 

S1
2 

S1
3 

S1
4 

S1
5 

S1
6 

𝛾3LM ℎ ℎ ℎ ℎ 𝑙 𝑙 𝑙 𝑙 
𝛾XR. ℎ ℎ 𝑙 𝑙 𝑙 𝑙 ℎ ℎ 
𝛾Q.R ℎ 𝑙 ℎ 𝑙 𝑙 ℎ 𝑙 ℎ 
𝜙 𝑚 𝑜 𝑚 𝑜 𝑚 𝑜 𝑚 𝑜 𝑚 𝑜 𝑚 𝑜 𝑚 𝑜 𝑚 𝑜 

 605 

Table 3: Cumulative results for Scenario C over the testing period. 606 

Scheme Period 𝐶\XX 	($𝐶𝐴𝐷) 𝐶U'U@Z^($𝐶𝐴𝐷) 𝑚XR.
UN0??U_ 	(𝑡𝑛) 𝑚3LM

NIOUP>	(𝑘𝑔) 

rRTO 
Daytime 8148.80 9056.14 4.48 25.12 

Overnight 7119.14 8286.15 7.95 21.31 

nRTO 
Daytime 8271.48 9108.18 4.65 23.88 

Overnight 7207.64 8393.87 7.73 21.44 

tRTO 
Daytime 8076.01 9006.85 4.52 24.05 

Overnight 7117.63 8629.10 7.82 21.40 

As summarized in Table 3, the rRTO scheme only experiences total of  ~0.48% economic performance deterioration 607 

with respect to the tRTO case whereas the nRTO deteriorates by ~1.9% over the time observed herein. The former is 608 

achieved through a ~1.7% reduction in energy penalty enabled by ~2.2% higher MEA consumption, which results 609 

in ~0.75% higher CO2 emissions when compared to the tRTO. Distinguishing between daytime and overnight 610 

periods, the rRTO is found to only experience ~0.9% deterioration in the former and ~0.02% in the latter. When 611 

compared to the corresponding ~2.4% and ~1.3% daytime and overnight deteriorations for the nRTO, the benefit of 612 

economic robustness becomes apparent. During the daytime period when prices fluctuate, the multi-scenario economic 613 

function of the rRTO outperforms that of the nRTO and results in a larger discrepancy between the two schemes. 614 

The economic benefits of using a robust approach are less than those when the parameter update scheme is deployed 615 

for flue gas composition as in scenario B. This suggests that the PCC process is less sensitive to the activity coefficient 616 

estimates despite them being uncertain in reality. Moreover, this is consistent with the “price of robustness”, whereby 617 

a robust solution must sacrifice performance of a specific scenario for optimality in the uncertainty region. However, 618 

small improvements can result in significant savings if the process is expensive as with PCC and longer time periods 619 

allow for further accretion of economic benefit. Extrapolating to a year’s worth of operation (this simulation length 620 

would be computationally prohibitive), the rRTO scheme would continue to outperform the nRTO leading to ~5% 621 

annual process cost improvement. This would result in total savings of ~2,250	$𝐶𝐴𝐷 over an extrapolated annual 622 
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PCC cost of a ~45,000	$𝐶𝐴𝐷/𝑦𝑟. As the PCC plant studies herein is a pilot plant, the benefits of would be even more 623 

significant in an industrial scale plant where costs are higher. 624 

 625 
Figure 6: %𝐶𝐶 set point trajectory statistics over 100-day testing period. 626 

In terms of set point, the %𝐶𝐶 set point is lower in the overnight period as shown in Figure 6. This occurs as there is 627 

less incentive for carbon removal as reflected in the low overnight SCC and sales rates in Figure 3 (bottom). In contrast, 628 

the %𝐶𝐶 set point are significantly (~3%) higher during the daytime when the removal incentives are stronger. As 629 

the nRTO finds the daytime set point with the live 7: 00 prices, this under-incentivizes the removal during the daytime 630 

period where the prices increase owing to the TOU fluctuations. In contrast, the robust formulation in the rRTO takes 631 

this variation into account and chooses higher daytime removal set point to account for periods of high carbon prices, 632 

hence the higher %𝐶𝐶 set point. Additionally, the nRTO is over-removing CO2 in the overnight period where removal 633 

incentives are not as strong, hence a higher %𝐶𝐶 set point; this is owed to increased error in parameter estimates when 634 

using the traditional PE approach when compared to a robust approach like the rRTO.  635 

As the rRTO does not produce parameter estimates, the %𝐶𝐶 is used as a proxy for operational variability. Figure 6 636 

shows the statistics of the capture level’s diurnal schedule over the testing period, with lines representing means and 637 

shaded regions representing standard deviations for each scheme considered in this scenario. As displayed therein, the 638 

daytime set points under the rRTO, nRTO, and tRTO are 96.53 ± 0.50%, 96.40 ± 1.06%, and 96.46 ± 0.19%, 639 

respectively. Furthermore, the overnight set points under the rRTO, nRTO, and tRTO are 93.51 ± 0.45%, 93.83 ±640 

2.62%, and 93.61 ± 0.38%, respectively. Accordingly, operation variability (as reflected in the standard deviations) 641 

is significantly reduced using the rRTO with respect to the nRTO. In contrast, the nRTO set points experience higher 642 

deviation than the rRTO set points despite being subject to the same disturbances and the same lv estimation scheme. 643 

As observed in the previous scenarios and in our past study (Patrón and Ricardez-Ssndoval, 2022a), reduced dynamic 644 

operation that results from reduced set point variability can impact operational costs. While the tRTO remains the 645 
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best-performing scheme in terms of economics and set point variability, the rRTO appears to show only small 646 

economic deterioration and set point variability (recall that tRTO is an idealistic scenario as discussed above). The 647 

latter is desirable from a controllability standpoint as the controller is put under less burden while maintaining 648 

relatively inexpensive process economics. Finally, the price robustness of the rRTO appears to have an effect under 649 

the quickly fluctuating daytime price profiles explored herein, which are typical in the diurnal operation of power 650 

plants. Again, the use of the lv-PE layer to provide robustness provides performance benefits with respect to the 651 

scheme provided in our previous work (Patrón and Ricardez-Ssndoval, 2022a); these are reflected in the improvement 652 

rRTO provides over nRTO with respect to cost, resource use, and emissions shown in Table 3 and Figure 6. 653 

5. Conclusions 654 

This work presents an RTO for PCC systems under operational and model uncertainty, which is manifested through 655 

the flue gas composition and activity coefficients, respectively. The lv-PE approach is deployed, which is designed to 656 

abate the propagation of measurement noise to parameter estimates; this is the first noise-abatement scheme deployed 657 

in the PCC literature. Furthermore, a robust RTO is used to determine an update strategy for the diurnal operation of 658 

PCC systems in cases with jointly uncertain model and economics.  659 

The findings herein indicate that the lv-PE schemes are more successful in their estimation with respect to the 660 

traditional DR scheme and approach the true economic optima with an ~8% loss compared to a known parameter 661 

case; this is contrasted with ~34% loss for the DR scheme. Moreover, the emissions and solvent consumption of the 662 

lv estimation scheme was also found to be consistently lower than the DR/estimation scheme. The results indicate 663 

that, while estimation scheme with DR can work well, the use of lv-PE can significantly improve the system 664 

performance. Furthermore, the RTO with lv-PE can come very close to the theoretical limit (i.e., RTO with true 665 

parameter knowledge), thus resulting in nearly optimal performance observed in previous studies where uncertainties 666 

were left unaddressed. Over the period tested, the present study also found that the use of the rRTO updating strategy 667 

for periods of high price fluctuations can result in cost savings of about ~1.4% and up to ~80% set point variability 668 

reduction over the two-step approach. All case studies observe economic improvements of real-time decision-making 669 

on long timescales. With respect to our previous work (Patrón and Ricardez-Ssndoval, 2022a), the results herein 670 

indicate that a simple PE layer is insufficient to consistently provide high-quality operating points in noisy 671 

environments with fluctuating economics; this is seen through consistent improvements in cost, environmental 672 
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performance, and resource use. Accordingly, the proposed schemes impart the necessary robustness to deal with these 673 

realistic scenarios. 674 
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Nomenclature 678 

PCC process symbols  Operational scheme symbols  
Component concentration (𝑚𝑜𝑙/𝐿) 𝐶0 Control horizon 𝐶 
Molar flowrate (𝑚𝑜𝑙/𝑠) 𝐹 Disturbance variables 𝒅 
Liquid level (𝑚) ℎ Mechanistic model 𝒇 
Mass flowrate (𝑡𝑛/𝑠) �̇� Inequality constraints 𝒈 
Component molar mass (𝑔/𝑚𝑜𝑙) 𝑀0 Observation model 𝒉 
Price of k ($𝐶𝐴𝐷/𝑢𝑛𝑖𝑡) 𝑃O Covariance matrix 𝑲 
Duty (𝑊) 𝑄 Measurement sample size 𝑀 
Fluid temperatures (𝐾) 𝑇 Number of/dimension 𝑛 
Gas molar fraction (𝑚𝑜𝑙/𝑚𝑜𝑙) 𝑦 Number of RTO periods 𝑁 
Flue gas flowrate multiplier 𝛼 Prediction horizon 𝑃 
Column height (𝑚) 𝑧 Economic uncertainties 𝑷 
Activity coefficient 𝛾 Weighting matrix 𝑸 
Efficiency factor 𝜂 Weighting matrix 𝑹 
Percent carbon capture (%) %𝐶𝐶 Time 𝑡 
  Manipulated variables 𝒖 
PCC Subscripts and superscripts  States 𝒙 
Absorber 𝑎𝑏𝑠 Controlled variables 𝒚 
Captured by absorber 𝑐𝑎𝑝 Measurements 𝒛 
Chemical feeds 𝑐ℎ𝑒𝑚 Controller sampling time ∆𝑡 
Buffer tank cooling 𝑐𝑜𝑜𝑙 RTO period ∆𝑇 
Carbon dioxide 𝐶𝑂* Standard deviation 𝝈 
Electricity sold to consumers 𝑒𝑙𝑒𝑐 Uncertain parameters 𝜽 
Emitted from PCC system 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 Measurement noise 𝒗 
Energy penalty 𝑒𝑛𝑒𝑟𝑔𝑦 t-value 𝜏 
Flue gas stream 𝑓𝑙𝑢𝑒 Economic function 𝝓 
Gas 𝑔   
Top of absorber column 𝐻 Operational scheme subscripts and 

superscripts 
 

Water 𝐻*𝑂 Annum/year  𝑎𝑛𝑛𝑢𝑚 
Into unit 𝑖𝑛 Controller 𝑐 
Liquid 𝑙 Cost 𝐶 
Mid-peak 𝑚 External uncertain model parameters 𝑑 
Makeup stream 𝑚𝑘𝑢𝑝 Estimated quantity/estimation 𝑒 
Monoethanolamine 𝑀𝐸𝐴 Finite elements in column height domain 𝑓𝑒𝑧 
Nominal 𝑛𝑜𝑚 Upper bound ℎ 
Nitrogen gas 𝑁* Lower bound 𝑙 
On-peak 𝑜 Low variance parameter estimation 𝑙𝑣 − 𝑃𝐸 
Out of unit 𝑜𝑢𝑡 Measured quantity 𝑚 
Reboiler heating 𝑟𝑒𝑏 Moving horizon estimation 𝑀𝐻𝐸 
Recycle stream 𝑟𝑒𝑐 Mean squared error 𝑀𝑆𝐸 
Captured carbon sales 𝑠𝑎𝑙𝑒𝑠 Nonlinear model predictive control 𝑁𝑀𝑃𝐶 
Steam generated by power generation 𝑠𝑡𝑒𝑎𝑚 Internal uncertain model parameters 𝑝 
Buffer tank 𝑡𝑎𝑛𝑘 Parameter estimation 𝑝𝑒 
Emitted from absorber in vent gas 𝑣𝑒𝑛𝑡 PCC process case study 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 
Bottom of absorber column 0 Post-combustion capture 𝑃𝐶𝐶 
  Robust real-time optimization 𝑟𝑅𝑇𝑂 
Accents  Real-time optimization 𝑅𝑇𝑂 
Model prediction/estimate 	 ̂ Steady-state 𝑠 
Average 	 ̅ Set point 𝑠𝑝 
  Current time period 𝑡 
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  True (i.e., not estimated) quantity 𝑇 
  Initial condition/time 0 

  679 
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