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Abstract 

Modifier adaptation (MA) is commonly used for economic optimization of systems under model uncertainty. In MA, 

gradient correction terms require estimation through perturbations, thus delaying the optimization procedure. A 

directional modifier adaptation method is proposed whereby a subset of available gradient corrections are made. An 

algorithm that evaluates possible adaptation strategies and chooses those with the largest economic effect is proposed, 

thereby allowing economical operation with less delay. The proposed scheme, named dMAIS, is deployed on the 

Williams-Otto process where it is found to outperform MA if not inhibited by filtering. Systems can also suffer from 

constraint violation if uncertainty is present, hampering safety and profitability. An adjustment step is proposed as 

part of dMAIS, whereby gradients are used to drive the plant to constraint satisfaction. The adjustments are studied in 

an evaporator case with a product quality constraint whereby dMAIS is shown to violate the constraint infrequently 

leading to higher throughput. The proposed approach was also compared to standard directional modifier adaptation 

in the evaporator case study, where it was found to be economically beneficial. The benefits of dMAIS are observed 

most salient for systems with increasing disturbance frequency.  

 

Keywords: Real-time optimization; Modifier adaptation; Plant-model mismatch; Frequent disturbances 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Corresponding author: e-mail: laricard@uwaterloo.ca, phone: (+1) 519 888 4567 x38667, fax, (+1) 519 888 4347  



 2 

1. Introduction 

The increasing interconnectedness of supply chains is necessitating a shift to real-time updates of operating strategies 

in the chemical and processing industries; this is facilitated by growing computational capabilities and the 

digitalization of manufacturers to aid in decision-making. As profitability is among the main drivers of these industries 

(i.e., along with sustainability), the focus of such computational tools has shifted to economic optimization, whereby 

process operating conditions can be determined such that they result in cost optimality subject to changes in upstream 

disturbances or downstream product demand. Model-based steady-state economic optimization is a particularly 

appealing strategy as existing nonlinear programming (NLP) methods can be deployed with complex process models, 

yielding solutions that can be implemented online in principle. The models used for these strategies serve as a 

representation of the actual plant that replicates its behaviour; ideally, the plant and model are perfectly matched such 

that their optimums are equivalent. In practice, plant and model optimums are mismatched as simplifications, 

assumptions, and estimates are required in the construction of process models; these are known as model uncertainties, 

which must be addressed to ensure the plant operation is indeed optimal.  

Several techniques exist to abate or hedge against model uncertainty in the online economic optimization literature; 

they can be broadly categorized into robust and adaptive approaches. Robust approaches, which include stochastic 

optimization (Zhang et al., 2002), can be used to compute operating points that are optimal for a set of potential 

uncertain parameter eventualities; however, these techniques result in performance loss as they find a robust solution 

that will be good regardless of the actual uncertainty realization and are not truly optimal for any single individual 

realization. In contrast, adaptive approaches (Chachuat et al., 2009) use online measurements to modify the process 

model such that it matches the plant. Chiefly among the adaptive approaches is the two-step real-time optimization 

(RTO) scheme (Chen and Joseph, 1987), which reconciles the model and plant prior to the economic optimization 

procedure through a parameter estimation procedure. The estimated parameters, which often capture process 

phenomena (e.g., thermodynamic activities, activation energies), are subsequently provided to the RTO such that 

economic optimization problem is solved with the updated model. Two-step RTO requires there to be minimal 

structural mismatch such that the plant and model optimality can be reconciled through the parameters alone; this is 

restrictive in cases where the model does not consider all the process phenomena (e.g., when it is simplified and not 

mechanistic) (Darby et al., 2011). Models used for the two-step approach must also fulfil the adequacy conditions 

outlined by Forbes and Marlin (1994, 1996). These state that the estimation/optimization problems must meet 

gradient/Hessian necessary conditions, which lead to plant optimality in the presence of constraints (i.e., KKT 

matching); however, this may not be the case in practice. Increasingly, however, modifier adaptation (MA) (Gao and 

Engell, 2005; Marchetti et al., 2009) and its many variants (Marchetti et al., 2010; del Rio Chanona et al., 2021) are 

being investigated for situations of structural model uncertainty where robust and two-step approaches are not suitable. 

A comprehensive review of MA can be found in Marchetti et al (2016). 

Instead of adapting model parameters, MA adapts the economic optimization problem via its objective function and 

inequality constraints. By introducing 0th order bias terms and 1st order gradient modifications with respect to the 

decision variables, MA has been proven to match plant and model KKT conditions (Marchetti et al., 2009). Assuming 

full state accessibility, the bias terms are straightforward to compute; however, the gradient estimation is more 
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intensive as it requires system perturbations. Imposing perturbations on the system requires small changes to be made 

on the input variables such that they produce a correspondingly small changes in the output variables in the 

neighbourhood of the current operating point. Note that perturbations can also refer to disturbances; henceforth we 

only use perturbations only to refer to small user-defined input changes. The gradient near the current operating point 

can then be estimated as the ratio of output to input perturbations, which allows for gradient modifiers to be computed 

and the process operating point to be updated. The gradient modifiers are then recomputed at the newly defined 

operating point as the local gradient changes with new operating points. This refinement process of updating operating 

points and gradients is repeated until the true (i.e., plant) operating point is reached by the model. If a disturbance 

occurs, the gradient computation and modifier refinement process can detect this mismatch such that the new plant 

optimal operating point is found again. Each input perturbation requires the system to undergo dynamic operation 

until the perturbed state is reached, thus delaying the operating point update. This can become detrimental if: i) there 

are many inputs such that many perturbations must occur; ii) the process dynamics are slow such that the gradient 

estimation is time consuming; and iii) the process disturbances occur at a high frequency. These conditions affect the 

amount of time it takes to converge to plant optimality. For instance, if disturbances are occurring frequently, the 

modifier refinement process may be interrupted before convergence to the optimum. Typically, layered RTO 

approaches are generally deployed for high-frequency disturbance scenarios (Bottari et al., 2020), whereby different 

timescales have individuated control schemes. More broadly, if the dynamics are slow, there are numerous inputs, or 

the disturbances occur at a high frequency, the system will not converge to an optimal solution in time to accrue the 

benefits of the true optimum. These represent the main weakness of the existing MA algorithms as constructed and 

deployed in the literature (Marchetti et al., 2016). A few MA variants have been proposed to circumvent the 

perturbation delay. Dual MA (Marchetti et al., 2010) has been proposed to estimate gradients using past operating 

points whereby new successive operating points are placed such that they contain sufficient information for gradient 

estimation. Gao et al., (2016) proposed the use of local approximations of the cost and constraint functions, which 

could be differentiated to produce gradient approximations. Some studies have taken the approach of using transient 

measurements to speed up the MA procedure (e.g., de Avila Ferreira et al., 2017; Marchetti et al., 2020). These 

generally use neighboring extremals, which assume that the uncertainty is parametric (François and Bonvin, 2014). 
Most notably, directional MA (dMA; Costello et al., 2016), which updates the cost and constraint gradients according 

to “privileged” input directions chosen through sensitivity analysis of the Lagrangian function, has been proposed. 

dMA does not ensure KKT matching but ensures that the cost cannot be improved further in the privileged directions 

upon its convergence. dMA requires the knowledge of which parameters are uncertain, their distributions, and the 

sensitivity of the optima to these parameters. The main difficulty that arises when using dMA is the requirement of 

model Lagrangian cross derivatives with respect to inputs and uncertain parameters. Model derivatives are acquired 

through a perturbation process or analytically; however, these are only computed once and generate local sensitivities. 

Costello et al. (2016) compute their privileged directions based on local model sensitivities with respect to inputs and 

uncertain parameters. In reality, structurally mismatched problems may not contain uncertain parameters. Even for 

cases with uncertain parameters, their distributions are unlikely to be known a priori and their sensitivities are unlikely 

to be the same across all potential operational points. Singhal et al. (2018) and Rodriguez et al. (2022) present a method 
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to compute global (instead of local) parameter sensitivities; this allows for changing privileged directions at different 

operating points, which yields more flexibility to the dMA method. These global sensitivity methods also require 

parameter probability densities to be known a priori, which enable parameter Monte Carlo sampling. In addition to 

the assumptions regarding a priori knowledge of the uncertain parameters, these dMA methods compute directions 

based on the proposed predictive model, (i.e., not plant quantities), hence the directions that are privileged for the 

model may not necessarily be suitable for the actual plant. Despite this progress on gradient estimation and many-

input systems, no prior MA scheme is aimed at frequent periodic disturbances. 

Another issue in MA is that of constraint satisfaction during modifier refinement. MA only guarantees satisfaction 

upon convergence; however, satisfaction is not guaranteed in the modifier refinement iterations. Bunin et al. (2011) 

presented a method to determine upper bounds on filter gains such that satisfaction is guaranteed. However, limiting 

the filter gain may slow convergence speeds. Previous studies have also proposed schemes to ensure feasible-side 

convergence, whereby each iterate is guaranteed to be constraint-satisfying (Marchetti et al., 2017a). These require 

the constraint and objective function be made strictly convex upper-bounding functions via additional quadratic terms; 

to do so, the estimation of Hessian matrices is needed, which may be impractical. Furthermore, Marchetti et al. (2017b) 

also deployed robust constraint upper bounds, which result in backoff from the true constraint but ensure iteration 

feasibility in the presence of gradient uncertainty; this scheme also requires process Hessians. A gap exists in the 

literature for an MA constraint-satisfaction scheme that enables the use of little filtering and does not require Hessian 

information, which is difficult to acquire in practice. 

In this work, we propose an MA variant for frequently disturbed periodic systems. Instead of adapting the MA problem 

with respect to all process inputs modifiers, the subset of modifiers is chosen that have the largest economic effects 

on the operating point. The proposed approach is shown to be a special case of dMA where the modified directions 

are limited to only include single inputs. While past approaches like dMA have used dimensionality reduction to 

address plant-model mismatch in many-input systems; we propose that dimensionality reduction can also be used in 

frequently-disturbed periodic systems, which has not been previously investigated in the context of dMA. The 

decreased experimental burden enabled by dimensionality reduction enables quicker action in the proposed approach. 

Moreover, an ancillary optimization problem is also proposed, which uses available plant and gradient information to 

drive the system to constraint adhering regions between MA iterations. To the authors' knowledge, the work presented 

in this study is the first dMA scheme to choose modification directions based on both model and plant (as opposed to 

only model) economics; thus, choosing modification directions based on plant knowledge (i.e., not solely based on 

model quantities). Moreover, it is the first dMA approach to address the effect of frequent periodic disturbances. This 

is also the first MA study in which constraint satisfaction during modifier refinement has been addressed through an 

optimal approach. Algorithms are outlined to integrate the directional modification and constraint satisfaction 

problems into a joint scheme referred from henceforth as directional modifier adaptation with input selection (dMAIS). 

The dMAIS algorithms determine: 1) which inputs to use for adaptation such that perturbation time is reduced, 2) 

when and by how much to adjust the operating point to ensure constraint satisfaction, 3) the number of directions to 

modify for a given disturbance frequency. Using the proposed method, the system can approach the economic 

optimum before the occurrence of a new disturbance while improving constraint satisfaction at each iteration. The 
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proposed scheme is evaluated through two case studies, which investigate the effect of number of modifiers, 

disturbance period, and filtering, as well as providing a comparison to the standard dMA scheme on the basis of 

process cost and constraint satisfaction.  

This work is structured as follows: section 2 reviews the standard MA formulation, implementation procedure, and 

assumptions in this work; section 3 builds on this formation and provides the dMAIS formulation, the constraint 

adjustment formulation, dMAIS properties, determination of modification directions, and corresponding algorithms; 

section 4 tests the dMAIS schemes in a variety of systems; and conclusion are outlined in section 5. 

2. Modifier adaptation 

The standard steady-state economic optimization problem is formulated as follows: 

min
𝒖𝒕

𝜙" 
𝒇(𝒙𝒕, 𝒖𝒕, 𝒅𝒕) = 0 
𝒈(𝒙𝒕, 𝒖𝒕, 𝒅𝒕) ≤ 0 
𝒖𝒍𝒃 ≤ 𝒖𝒕 ≤ 𝒖𝒖𝒃 

(1) 

where 𝒙𝒕 ∈ ℝ&", 𝒖𝒕 ∈ ℝ&#, and 𝒅𝒕 ∈ ℝ&$ denote the model-predicted process states, inputs, and measured/estimated 

disturbances, respectively, at time 𝑡 (i.e., the current time at which the solution will be conveyed to the plant). 𝜙" ∈ ℝ 

denotes economic objective function (e.g., steady-state cost, energy consumption); in this work we take the convention 

of minimization, however maximization is equally valid through the requisite reformulations.	𝒇: ℝ&# ×ℝ&$ → ℝ&" 

denotes steady-state process model, which maps the disturbances and inputs to the states (this model must fulfil the 

adequacy conditions like a positive definite Lagrangian Hessian matrix as outlined in Marchetti et al. (2009)). 𝒖𝒍 ∈

ℝ&# and 𝒖𝒖 ∈ ℝ&# denote the lower and upper bounds, respectively, for the process inputs. 𝒈:ℝ&" ×ℝ&# ×ℝ&$ →

ℝ&% denotes the process inequality constraints (e.g., grade requirements, safety specifications). Formulation (1) does 

not address uncertainty and is susceptible to model inaccuracies as 𝒇 may not fully match the true plant 𝒇𝒑. 

Accordingly, MA adjusts the inequality constraints as follows: 

𝒈𝑴𝑨,𝒕 ≔ 𝒈(𝒖𝒕, 𝒅𝒕) + 𝜺𝒈,𝒕 + 𝝁𝒈,𝒕, (𝒖𝒕 − 𝒖𝒕-𝟏) (2) 

where 𝜺𝒈,𝒕 ∈ ℝ&% are 0th order modifiers (i.e., bias terms) and 𝝁𝒈,𝒕 ∈ ℝ&#×&% are 1st order modifiers (i.e., gradient 

correction terms). Moreover, 𝒖𝒕-𝟏 ∈ ℝ&# denotes the inputs from the previous MA execution with which the plant is 

operating prior to solving the updated MA problem. The 1st order modifiers, as will be explained later in this section, 

capture the difference between plant and model gradients (i.e., gradient error); hence the use of an input difference in 

equation (2). Additionally, MA modifies the objective function as follows: 

𝜙01," ≔ 𝜙" + 𝝁𝝓,𝒕, 𝒖𝒕 (3) 

where 𝝁𝝓,𝒕 ∈ ℝ&# are 1st order modifiers. Note that the objective function is only adapted in the constraint gradients 

with respect to the decision variables (as opposed to the difference between the inputs and previous inputs). This 

occurs as objective bias terms (𝜺𝝓,𝒕) and modifiers with respect to prior inputs (𝝁𝝓,𝒕, 𝒖𝒕-𝟏) would be constant terms, 

thus would not contribute to the objective function as they would contribute to the feasible region via the constraints 

in equation (2) (Marchetti et al., 2016). 
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Plant quantities are denoted with subscript 𝑝 while model quantities are denoted with the subscript 𝑚. The 0th order 

modifiers are the difference between the plant and model constraint predictions at the pre-update operating point 

defined by the previous MA iteration, defined as follows: 

𝜺𝒈,𝒕 = 𝒈𝒑,𝒕-𝟏 − 𝒈𝒎,𝒕-𝟏 (4) 

where 𝒈𝒑,𝒕-𝟏 ∈ ℝ&% and 𝒈𝒎,𝒕-𝟏 ∈ ℝ&% denote the plant and model constraints under the inputs (𝒖𝒕-𝟏) from the 

previous MA execution. Similarly, the 1st order modifiers are the difference between plant and model gradient 

predictions at the current time, i.e., 

𝝁𝒈,𝒕 = 𝑱𝒈𝒑(𝒖𝒕'𝟏) − 𝑱𝒈𝒎(𝒖𝒕'𝟏) (5) 

𝝁𝝓,𝒕 = ∇𝒖𝒕'𝟏𝜙6 − ∇𝒖𝒕'𝟏𝜙7 (6) 

where ∇𝒖𝒕'𝟏 denotes the gradient operator applied to scalar-valued plant and model economic functions (𝜙6 and 𝜙7 , 

respectively) at the operating point corresponding to 𝒖𝒕-𝟏. 𝑱𝒈𝒑(𝒖𝒕'𝟏) ∈ ℝ
&%×&# and 𝑱𝒈𝒎(𝒖𝒕'𝟏) ∈ ℝ

&%×&#  denote, 

respectively, the Jacobian matrices of the plant and model constraints with respect to the inputs at 𝒖𝒕-𝟏. The modifiers 

in equations (5) and (6) are calculated by perturbing the inputs around the operating point (i.e., corresponding to 𝒖𝒕-𝟏) 

and using a gradient estimation method. For this study, finite difference approximation (FDA) is used as it has been 

found to perform adequately in past studies (Marchetti et al., 2016); however, other techniques exist, which have been 

previously compared in the literature (Mansour and Ellis, 2003). Accordingly, the gradients from FDA, which 

populate the Jacobian and gradients in equations (5) and (6) are defined as follows: 

𝜕𝑔8
𝜕𝑢9

=
𝑔8,9,6:;" − 𝑔8,&<7

𝛿𝑢9
																																																																																							∀𝑖 ∈ F1,… , 𝑛=J,				∀𝑗 ∈ {1,… , 𝑛>} (7) 

𝜕𝜙
𝜕𝑢9

=
𝜙9,6:;" − 𝜙&<7

𝛿𝑢9
																																																																																																																											∀𝑗 ∈ {1,… , 𝑛>} (8) 

where 𝛿𝑢9 denotes a small change (i.e., a perturbation) in the jth input 𝑢9. Note that the subscript 𝑝𝑒𝑟𝑡 and 𝑛𝑜𝑚 refer 

to the perturbed (i.e., post-perturbation) and nominal (i.e., pre-perturbation) quantifies, respectively.  

Furthermore, modifiers are also passed through first-order filters to abate the effect of measurement noise and ensure 

a smooth convergence to the true plant optimum; this also prevent sudden operating point changes that may be 

impractical from an instrumentation perspective (i.e., overly aggressive control actions). The filters are defined as 

follows: 

𝜺𝒈,𝒕
𝒇 = (𝑰𝒏𝒈 − 𝝀𝜺)𝜺𝒈,𝒕

𝒆 − 𝝀𝜺𝜺𝒈,𝒕-𝟏
𝒇  (9) 

𝝁𝒈,𝒕
𝒇 = (𝟏&%×&# − 𝝀𝒈)⨀𝝁𝒈,𝒕

𝒆 − 𝝀𝒈⨀𝝁𝒈,𝒕-𝟏
𝒇 ∀𝑗 ∈ {1,… , 𝑛>} (10) 

𝝁C,𝒕
𝒇 = (𝑰𝒏+ − 𝝀C)𝝁C,𝒕

𝒆 − 𝝀C𝝁C,𝒕-𝟏
𝒇  (11) 

where 𝝀𝜺 ∈ ℝ&%×&% and 𝝀C ∈ ℝ&#×&# are diagonal weighting matrices, which act on their respective modifers via 

matrix multiplication. The 𝑒 and 𝑓 superscripts denote estimated (via FDA) and filtered modifiers, respectively. 

Moreover, 𝝀𝒈 ∈ ℝ&%×&# is a nonzero weighting matrix and 𝟏&%×&# ∈ ℝ
&%×&# is a matrix of ones; these act on its 



 7 

modifiers via the element-wise multiplication ⨀. The elements of the filter matrices 𝜆 ∈ [0,1) are user-defined tunable 

parameters that determines the rate of convergence of the MA scheme. 	

Figure 1 illustrates the standard MA procedure whereby the filtered modifiers are initialized at zero, 𝑛> perturbations 

occur, modifiers are calculated and filtered, the operating point is updated, and iterative refinement of the modifiers 

occurs.  

  
Figure 1: Depiction of the standard MA algorithm. 

The standard MA procedure as depicted in Figure 1, and all the methods presented hereafter, are subject to the 

following assumptions for this work: 

1. The plant experiences periodic disturbance (i.e., they occur at fixed time intervals). 

2. Uncertain model parameters and their distributions are unknown as the plant only contains structural 

mismatch. 

3. Disturbances can be readily detected. 

Assumption 1 is applicable to many plants whereby inlet raw material grades are updated on a regular basis. These 

are treated as disturbances, which vary diurnally, seasonally, or according to upstream production schedules. Examples 

of periodic disturbances include: energy systems (fired power plants: Patrón and Ricardez-Sandoval, 2022a; industrial 

boilers: Yip and Marlin, 2004), chemical plants (ethylene production: Tian et al, 2013; polyamine production, 

distillation: Pan and Lee, 2003), biological systems (nitrification/denitrification: Kornaros et al., 2012), and 

agricultural systems (greenhouse: Pawlowski et al., 2011). Assumption 2 is generally the case in models that are not 

mechanistic whereby simplifying assumptions are made for the model to be solvable. A process operator may 

deliberately choose to omit phenomena from a process model to make it more parsimonious or the modeler may have 

formulated a mismatched model as complex analytical expressions can cause problems in optimization programs. In 

any case, most models have some degree of structural mismatch. Assumption 3 assumes that disturbance/steady-state 

Perturbations: 
𝛿𝑢𝑗∀𝑗 ∈ {1,… , 𝑛𝑢 }

Estimate modifiers and 
filter: eqns (4)−(11)

𝒈𝑗 ,𝑝𝑒𝑟𝑡 ,𝜙𝑗 ,𝑝𝑒𝑟𝑡

𝑡 ← 𝑡 + 1
𝜺𝑔,𝑡−1
𝑓 ← 𝜺𝒈,𝑡

𝑓

𝝁𝒈,𝑡−1
𝑓 ← 𝝁𝑔,𝑡

𝑓

𝝁𝜙 ,𝑡−1
𝑓 ← 𝝁𝜙 ,𝑡

𝑓

Solve MA: eqns (1)−(3), 
and apply to plant
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𝒇 , 𝝁𝒈,𝒕
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𝝁𝒈,𝒕−𝟏
𝒇 = 𝟎, 𝜺𝒈,𝒕−𝟏

𝒇 = 𝟎, 𝝁𝜙 ,𝒕−𝟏
𝒇 = 𝟎

𝑡 = 0

Convergence?

End

Ye s
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detection is readily available; this means that the operating mode (i.e., transient or steady) can be ascertained at any 

given time. While this is a non-trivial problem, it is outside the scope of the current study. Examples of 

disturbance/steady-state detection use test statistics (Cao and Rhinehart, 1995), Monte Carlo sampling (Hou et al., 

2016) and Wavelet transforms (Jiang et al., 2003). 

3. Directional modifier adaptation with input selection(dMAIS) 

A new variant on the standard MA scheme outlined in section 2 is proposed whereby only some input modifiers are 

continually refined; thus, achieving quicker action in the presence of frequent periodic disturbances. This scheme is 

denoted as directional modifier adaptation with input selection (dMAIS) and is depicted in Figure 2. 

 
Figure 2: Depiction of the dMAIS algorithm. 

𝒖𝑡 , 𝒈𝒑,𝒕

Solve dMAIS: eqns (13), 
(14), and apply to plant

Solve adjustment problem 
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3.1. dMAIS formulations and algorithm 

As shown in Figure 2, there are three distinct operations that can occur within the proposed algorithm. Prior to the 

first dMAIS iteration, initialization occurs whereby the filtered modifier values are defined as zero and the number of 

gradient modifiers 𝑛D is chosen; the choice of this term is discussed in section 3.3. Furthermore, we introduce 𝜶 and 

𝑎7EF, which are defined for the operating point adjustment at the outset; these are discussed in depth later. For 𝑡 = 0 

the MA procedure proceeds as usual through the full MA (i.e., red block in Figure 2); 𝑛> perturbations are made and 

the corresponding modifiers 𝜺𝒈,𝒕
𝒇 , 𝝁𝒈,𝒕

𝒇 , and 𝝁C,𝒕
𝒇  are computed as depicted in Figure 2.  

After every operating point update, the new operating point is checked for constraint violations. If violations are 

detected, the algorithm proceeds through the operating point adjustment (blue block in Figure 2), which is discussed 

later. If no violations are present, the system is checked for any new disturbances; a new disturbance would trigger 

the full adaptation procedure as depicted in Figure 2, otherwise the dMAIS scheme is engaged as depicted in the green 

block in Figure 2.  

Assuming no disturbances and no constraint violations, the dMAIS adaptation can begin after the initial iteration (i.e., 

𝑡 > 0). The modifiers corresponding to 𝑛D ∈ {ℤG: 𝑛D < 𝑛>} inputs are iteratively refined; these are chosen based on 

their impact on the economic predictions of the MA problem such that the inputs with the largest effect are chosen. 

This leverages the fact that not all inputs have the same effect on optimality and choosing the appropriate inputs will 

yield a sufficiently good operating point without taking as much perturbation time. To evaluate the impact of 

individual input modifiers on economic predictions, the “modified costs” are introduced herein to choose which 𝑛D 

inputs modifiers should be used. Since all modifiers are calculated in the first full MA iteration, they can be used to 

make process predictions at the current operating point; accordingly, the modified costs are defined as follows: 

𝜙]9," ≔ 𝜇C,",9𝑢",9 																																																																																																																																						∀𝑗 ∈ {1,… , 𝑛>} (12) 

where the modified costs are sorted into the ordered set (i.e., sequence) 𝑈 = {𝜙]9,"}9HI
&#  and 𝒖𝒐𝒓𝒅 ∈ ℝ&# is the 

corresponding vector of inputs sorted by modified cost. The modified cost in equation (12) is used to rank possible 

single-input modifications using the most recently available modifiers. Accordingly, the dMAIS scheme uses both 

plant and model information to choose the inputs with respect to which the cost gradient has the largest gradient error 

(i.e., the largest modifiers). This modifier is then multiplied by the most recent input value to normalize gradient with 

respect to the input magnitude. Accordingly, the inputs that are chosen by equation (12) are those that will lead to the 

largest corrections in the cost gradient. The modified cost of each input will be different owing to their distinct values 

and gradients. However, a situation may arise in which the difference is relatively small. Even if the small difference 

is owed to numerical or process noise, both inputs in question will have similar effects on plant-model mismatch so 

the choice of either input will have similar adaptation effects on the system. 
With the minimization convention, the first 𝑛D elements of 𝒖𝒐𝒓𝒅 are stored in the vector `𝒗 = 𝒖𝒐𝒓𝒅,𝟏:&,b ∈ ℝ

&- as 

these inputs yield the lowest modified costs; these correspond to the set of modified costs 𝑉 = {𝑈: 𝑗 ≤ 𝑛D}. Moreover, 

the remaining 𝑛> − 𝑛D elements of 𝒖𝒐𝒓𝒅 are stored in the vector `𝒘 = 𝒖𝒐𝒓𝒅,&,:&#b ∈ ℝ
(&#-&-); these correspond to 

the set of modified costs 𝑊 = {𝑈: 𝑗 > 𝑛D}. In other words, the input variable vector is decomposed into two 

subvectors. 𝒖 = [𝒗 𝒘], and the sequence of modified costs is such that 𝑈 = 𝑉 ∪𝑊. The inputs in 𝒗 are those whose 
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modifiers lead to the best predicted economics (i.e., the least predicted costs); thus, only the modifiers corresponding 

to 𝒗 are adapted with respect to in the next dMAIS execution. Thus, the objective function becomes: 

𝜙601," ≔ 𝜙" + 𝜸𝝓,𝒕, 𝒗𝒕 +𝝎𝝓,𝒕
, 𝒘𝒕 (13) 

where 𝜸𝝓,𝒕 ∈ ℝ&- and 𝝎𝝓,𝒕 ∈ ℝ(&#-&-) are the 1st order objective function modifiers corresponding to 𝒗 and 𝒘, 

respectively. Accordingly, like the input vector, the vector of objective function modifiers is decomposed into two 

subvectors 𝝁C = [𝜸C 𝝎C],. 

Likewise, the adapted constraints become: 

𝒈𝒑𝑴𝑨,𝒕 ≔ 𝒈(𝒖𝒕, 𝒅𝒕) + 𝜺𝒈,𝒕 + 𝜸𝒈,𝒕, (𝒗𝒕 − 𝒗𝒕-𝟏) + 𝝎𝒈,𝒕
, (𝒘𝒕 −𝒘𝒕-𝟏) (14) 

where 𝜸𝒈,𝒕 ∈ ℝ&-×&% and 𝝎𝒈,𝒕 ∈ ℝ(&#-&-)×&% are the 1st order constraint modifiers corresponding to 𝒗 and 𝒘, 

respectively. Accordingly, like the input vector, the matrix of gradient modifiers is decomposed into two block 

matrices, i.e., 𝝁𝒈 = [𝜸𝒈 𝝎𝒈],. 

At each dMAIS iteration, the members of 𝑉 and 𝑊 (and their corresponding vectors 𝒗 and 𝒘) are refined according 

to the ranked modified cost sequence in equation (12) as described above. This sequence is updated using the newly 

updated economic function gradient modifiers (𝜸C) along with the outdated modifiers (𝝎C). This allows for iterative 

refinement of the inputs that have the largest effect on economic function adaptation until convergence to their final 

modifiers and final membership of 𝑉 and 𝑊. This process of refinement is depicted in the “rank inputs” block of 

Figure 2. We note that, the ability to change modification directions through 𝑉 and the modified cost is present in 

dMAIS but not the standard dMA (Costello et al., 2016); the latter can yield myopic behaviour owed to its directional 

inflexibility. 

If a disturbance is detected after any dMAIS iteration, the previous members of 𝑉 and 𝑊 are no longer valid as the 

operating point has changed and the gradients may be different in the new operating neighbourhood. This triggers the 

disturbance block in Figure 2 that toggles between the full and dMAIS adaptation schemes. The toggling of schemes 

allows for a full set of modifiers 𝝁C and 𝝁𝒈 to be computed such that an entirely new 𝑈 and its corresponding 𝒖𝒐𝒓𝒅 

can be found at the new operating point.  

As only plant economics are considered in the input ranking equation (12), constraint satisfaction is unaddressed at 

each dMAIS iteration. Furthermore, constraint satisfaction upon convergence is not guaranteed when using dMAIS 

(i.e., no plant/model KKT matching). Even with consideration of the Lagrangian as in directional MA (Costello et al., 

2016), iteration satisfaction is not guaranteed. Indeed, full MA schemes (i.e., not only dMAIS) only ensure constraint 

satisfaction at convergence; hence, the “path” to the optimum may be subject to iterations where violations occur 

(Marchetti, 2022). Thus, recourse action is needed to avoid constraint violations at dMAIS iterations and upon 

convergence where these violations could lead to safety or economic concerns (e.g., violation of temperature limits or 

production below purity specification). In systems with frequent disturbances, it is advantageous to satisfy constraints 

along the path as convergence to a final steady state may never be achieved. 

To minimize these iterative constraint violations, operating point “adjustments” ancillary problems are proposed to be 

solved after every adaptation iteration where constraint violations are detected. These are depicted in the blue block 
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of Figure 2. The adjustment problems use process measurements and the plant gradient data available from the dMAIS 

perturbations to formulate of a quadratic problem (QP) that reduces or altogether closes the constraint violation gap.  

The dMAIS section of the algorithm features adjustments occurring after the solution is applied to the plant. As shown 

in Figure 2, these adjustments only occur if a constraint violation is detected. Once this occurs, the following problem 

is solved: 

min
∆𝒗
‖𝒈k𝒂𝒄𝒕‖𝑸𝑨

S 
𝒈k = 𝒈𝒑 + 𝑱𝒈(𝒗𝒕'𝟏)∆𝒗 
𝒈k𝒂𝒄𝒕 = 𝑨𝒈k 
𝒈k𝒊𝒏 = (𝑰&% − 𝑨)𝒈k 
𝒈k𝒊𝒏 ≤ 𝟎 
𝑸 = 𝑑𝑖𝑎𝑔(𝑔6,U ⋯ 𝑔6,&%) 

𝑨 = 𝑑𝑖𝑎𝑔(𝑎U ⋯ 𝑎&%): 𝑎8 = r
1 𝑔6,8 > 0
0 𝑔6,8 ≤ 0 

−𝜶 ≤ ∆𝒗 ≤ 𝜶 

(15) 

where 𝒈k and 𝒈𝒑 ∈ ℝ&% are the linear model-predicted and current (measured) plant operating point for all constraints. 

𝑱𝒈(𝒗𝒕'𝟏) ∈ ℝ
&%×&- is the Jacobian of the constraints with respect to the subset of process inputs used in the dMAIS 

step; this is constructed using the most recent directional plant perturbation results. Using the most recently calculated 

plant Jacobian, a local approximation of the constraint-input relationship is generated such that small input adjustments 

can be computed. This differs from a constraint adaptation scheme (e.g., Chachuat et al., 2009) since it uses a linear 

model with a satisfaction objective as opposed to a nonlinear model with an economic objective; moreover, the 

adjustment step is used to compliment the dMAIS problem defined above, which acts on an economic basis. The 

model-predicted constraint vector is partitioned into active and inactive constraints using the matrix 𝑨 ∈ ℝ&%×&% and 

its identity matrix difference 𝑰 − 𝑨 where 𝑰&% ∈ ℝ
&%×&%. 𝑨 contains diagonal identity elements to indicate if the plant 

constraint 𝑔6,8∀𝑖 ∈ {1,… , 𝑛=} has been violated. Using the 𝑨 matrix, the inactive constraint entries are set to zero in 

the vector 𝒈k𝒂𝒄𝒕 ∈ ℝ&%; conversely, the active constraint entries are set to zero in the vector 𝒈k𝒊𝒏 ∈ ℝ&%. Using the 

inactive constraint predictions 𝒈k𝒊𝒏, the linearized model can be used such that they remain inactive using the inequality 

constraint in formulation (15). Moreover, the objective function in (15) features a minimization term for the active 

constraints 𝒈k𝒂𝒄𝒕 whereby their predicted value is minimized; this serves to bring their value to zero as constraints in 

MA are posed such that the RHS is zero. This objective is weighted by a diagonal matrix of the constraint violation 

magnitudes for the active constraints 𝑸𝑨 ∈ ℝ&%×&% ; this way larger violations are prioritized over smaller violations. 

The decision variable for this problem is the vector of process inputs adjustments ∆𝒗 ∈ ℝ&-, which are bounded by 

the user-specified 𝜶 ∈ ℝ&- mentioned in the initialization section above. The adjustment bounds are designed to be 

small through the choice of 𝜶, thus requiring little computational or transient time. Also required in initialization are 

the maximum number of constraint adjustments 𝑎7EF; this is imposed on the scheme such that there is little delay in 

returning to the dMAIS loop. Accordingly, 𝜶 and 𝑎7EF are user defined but should be small (i.e., since they are 

assumed to be adjustments and not large changes). We note that the disturbance block is checked at every iteration of 

the dMAIS algorithm as shown in Figure 2. Whether or not a constraint violation is detected, disturbances must be 
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checked to accommodate for their potential effect of suddenly changing the memberships in 𝑉 and 𝑊. The timeliness 

of this check is ensured by capping the number of adjustment iterations at 𝑎7EF. 

While the operating point adjustment problem (15) focuses solely on constraint attenuation, the main dMAIS objective 

in equations (13) and (14) is still to minimize plant-model mismatch through its modifiers. The reason for the 

additional adjustments is to decrease potential constraint violations in the modifier refinement process whereby the 

plant-model mismatch is not accounted for to its full possible extent within the dMAIS paradigm. Through the 

adjustment subproblem (15), constraint-violating operating points may be abated quickly. Firstly, the measurement of 

𝒈𝒑 serves to localize problem (15) in the current constraint-space of the plant. This measurement is updated at every 

adjustment problem iteration such that the local linear prediction of constraints 𝒈k begins at the correct state. 

Additionally, only the inputs contained within 𝒗 are used for the constraint adjustment step as only the local plant 

gradients for these inputs are updated as part of the dMAIS algorithm. Despite no guarantee being available for 

whether violation will be avoided (this would require controllability of all states via all inputs); problem (15) uses 

readily available information via 𝒈𝒑 and 𝑱𝒈(𝒗𝒕'𝟏) as opposed to other constraint-feasibility approaches that require 

additional data be estimated from the system (e.g., Hessian matrices). Note that problem (15) constitutes a discrete 

time one-step-ahead linear-quadratic regulator whereby no control-move suppression terms are used, and the state 

matrix is an identity matrix. In principle, such a linear quadratic regulator is solvable for an explicit feedback law 

using the dynamic Ricatti equation; however, the inactivity constraints and absence of control move suppression term 

prohibits this for the system shown in equation (15). 

The dMAIS algorithm is summarized as follows: 

Algorithm 1: dMAIS operation 

 Initialize: define 𝑛D, 𝜶, 𝑎7EF, 𝝁𝒈,𝒕-𝟏
𝒇 = 𝟎, 𝜺𝒈,𝒕-𝟏

𝒇 = 𝟎, 𝝁C,𝒕-𝟏
𝒇 = 𝟎.	

1.  For 𝑡 = 0: perform full MA and apply to plant. 

2.  Are constraints being violated? 

a.  Yes: 𝑎 = 0, activate constraint adjustment, go to step 3. 

b.  No: proceed to step 5. 

 Operating point adjustments 

3.  Solve problem (15) and apply to plant. 

4.  𝒈𝒗𝒊𝒐𝒍 < 𝟎 or 𝑎 > 𝑎7EF? 

a.  Yes: Proceed to step 5. 

b.  No: 𝑎+= 1, return to step 3. 

5.  New disturbance? 

a.  Yes: 𝑡+= 1, activate full MA, go to step 6. 

b.  No: 𝑡+= 1, activate dMAIS, go to step 9. 

 Full adaptation 

6.  Perturb 𝑛> inputs. 
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7.  Estimate 𝑛> modifiers and filter. 

8.  Solve full MA problem using equations (2) and (3). Return to step 2. 

 Directional adaptation with input selection 

9.  Perturb 𝑛D inputs. 

10.  Estimate 𝑛D modifiers and filter. 

11.  Re-evaluate “modified costs” in equation (12) and refine modifiers in 𝒗. 

12.  Solve dMAIS using equations (13) and (14). 

13.  Has the scheme converged to an operating point 

a.  Yes: end. 

b.  No: continue refining modifiers and return to step 2. 

The benefit to the proposed dMAIS approach is twofold: firstly, using 𝑛D < 𝑛> input modifiers result in a faster acting 

scheme that prioritizes economic modification; secondly, the adjustment step will enable iterates to be constraint 

abiding without any additional information (e.g., Hessian matrix). On the other hand, the adjustment step in the 

proposed dMAIS scheme is designed to act quickly and only take small steps. Accordingly, the system may not be 

able to close the constraint gap if the adjustment step begins far from the constraint as the number of adjustment 

iterations is limited in quantity and size. Crucially, the selection of 𝑛D is not a trivial and an algorithm that leverages 

disturbance periodicity to determine the number of modification directions is presented in section 3.3.  

We note that, dMAIS concepts can be used in tandem with previously proposed methods. Indeed, the modified cost 

metric introduced in this work can be used similarly to the sensitivity matrix in standard dMA to compute privileged 

directions (i.e., not limited to partial single-input derivatives). Moreover, the dual methods and the use transient 

measurements introduced by Costello et al. (2016) and François and Bonvin (2014), respectively, can also be 

incorporated into the dMAIS scheme proposed in this work. 

3.2. dMAIS properties 

The vector 𝒗𝒕 of inputs used in the dMAIS approach can alternatively be represented by the block matrix 𝑽𝒕 ∈ ℝ&#×&-, 

i.e.: 

𝑽𝒕 = t
𝑑𝑖𝑎𝑔(𝑢U, … , 𝑢&-)
𝟎(&#-&-)×&-

u (16) 

where 𝟎(&#-&-)×&- ∈ ℝ
(&#-&-)×&- denotes a zero matrix. Similarly, dMA defines its directions using the block matrix 

𝑼𝒕 ∈ ℝ&#×&-, i.e.: 

𝑼𝒕 = [𝜹𝒖U ⋯ 𝜹𝒖&-] (17) 

where (𝜹𝒖9 ∈ ℝ&#)	∀𝑗 ∈ {1,… , 𝑛D} are the vectors containing input directions whereby a subset of the inputs elements 

is chosen for each direction. From equations (16) and (17), it is evident that 𝑽𝒕 is a special case of 𝑼𝒕 whereby only 

the diagonal elements in the top block are used. This represents an analogue to multivariable calculus whereby partial 

derivatives represent a special case of directional derivatives. Since dMAIS implies a special case of dMAIS, some 

properties of the latter can be applied to dMAIS.  
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Theorem 1: (Plant optimality for chosen input adaptations). Consider the dMAIS algorithm without measurement 

noise and perfect estimation of plant derivatives in 𝑛D inputs. If the algorithm converges to the fixed point 

(𝒖V, 𝜺𝒈,V, 𝜸𝒈,V, 𝜸𝝓,V), this corresponds to a KKT point of the modified optimization problem in equations (13) and 

(14), then 𝒖V will be optimal for the plant in these 𝑛D directions. 

Proof: As shown above, dMAIS is a special case of dMA. Accordingly, see Costello et al. (2018), Theorem 3.1. ∎ 

An advantage of dMAIS is that inputs are chosen based on readily available plant data whereby the information 

necessary to compute the modified costs is found as part of the dMAIS algorithm during the perturbation step. Instead 

of using model sensitivities with respect to uncertain parameters to determine 𝑼𝒕, the modified cost metric in equation 

(12) uses the cost gradient modifiers (i.e., the plant-model cost gradient error) to determine the inputs to which the 

cost is most sensitive (i.e., 𝑽𝒕). These modifiers are multiplied by the latest-acquired input values to normalize their 

magnitude; thus, dMAIS chooses the directions of highest normalized input error. Note that Costello et al. (2016) 

normalize the sensitivity matrix with uncertain parameter ranges; however, this does not abide by assumption 2 

(section 2). Moreover, the approach presented offers benefits with respect to the active approach proposed by Singhal 

et al. (2018); namely, it does not rely on parameter uncertainty being present or access to a probability density as 

stated in assumption 2 (section 2). With the approach presented in this work, we only consider the cost gradient 

sensitivities, which are equivalent to the Lagrangian gradient in the case of no active constraints. Only cost sensitivities 

are considered (as opposed to Lagrangian sensitivities) because the plant Lagrange multipliers cannot be readily 

measured.  

3.3. Disturbance periodicity and the number of modification directions 

The aforementioned weaknesses in the standard MA scheme can be seen most saliently in equations (7) and (8), which 

depend on the index ∀𝑗 ∈ {1,… , 𝑛>} and correspond to the perturbation block in Figure 1. As previously noted, these 

perturbations delay the operating point updates as they may be time-consuming. To analyze the refinement time that 

the MA scheme requires, we introduce a user-defined perturbation time 𝜏 (i.e., the required to perform a single 

perturbation), a system-defined settling time	𝛵 (i.e., the time required to reach a new operating point upon modifier 

refinement), and an externally defined disturbance period ∆𝑇 (i.e., the time between subsequent disturbances). The 

use of different 𝜏 and 𝛵 reflects the fact that small perturbations (of 𝜏 duration) may not require the same settling time 

as an operating point change (of	𝛵 duration). This occurs as perturbations are meant to be small (i.e., a fraction of an 

input’s value) while operating point changes are potentially large (i.e., a completely different set of input values). 
Accordingly, if 𝑛>, 𝜏, or 𝛵 are large, the MA refinement procedure will be time-consuming. Furthermore, if ∆𝑇 is 

small, convergence to the true optimum may not occur before a new disturbance is imposed. That is, if the MA scheme 

requires 𝑛01 iterations to converge to the optimum, the following inequality must hold if convergence is to occur: 

𝑛01𝑛>𝜏 + 𝑛01𝛵 ≤ ∆𝑇 (18) 

However, this inequality may not be fulfilled if 𝑛> and 𝜏 are large, or ∆𝑇 small as mentioned previously. By treating 

equation (18) as an equality we can express the maximum number of MA iteration necessary to reach convergence as 

follows: 
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𝑛01 =
∆𝑇

𝑛>𝜏 + 𝛵
 (19) 

This ratio is not practically useful as many of these quantities are not known a priori; however, it serves for theoretical 

discussion of the MA schemes in periodic settings. In contrast to MA equation (19), the number of iterations to reach 

convergence for dMAIS is defined as follows: 

𝑛W01XY =
∆𝑇

𝑛D𝜏 + 𝛵
 (20) 

since 𝑛D < 𝑛> perturbations are performed on most iterations, a larger number of dMAIS iterations may be performed 

(i.e., 𝑛601 > 𝑛01). This results in quicker modifier refinement, which is the working principle of dMAIS. These 

refinements will work towards the directional optimum given the chosen modification directions; as a full set of 

modifiers is not refined until convergence, the dMAIS scheme will not converge to the plant KKT points as noted for 

dMA (Costello et al., 2016). However, the directional optimum will certainly be better than a “do-nothing” case and 

convergence to this optimum may occur more quickly (i.e., within a given disturbance period). 

Recalling equations (19) and (20), which quantify the number of MA and dMAIS iterations that a given scheme must 

perform to reach convergence, we propose a scheme-independent metric to assess the efficacy of various dMAIS and 

MA schemes on a given system. While the number of modified inputs is scheme-dependent and the settling time is 

not known a priori, thus rendering equations (19) and (20) impractical; they elucidate how the number of iterations of 

each scheme is dependent on the disturbance period (i.e., 𝑛601 = 𝑓(∆𝑇)). Thus, for a given plant, the best number of 

inputs modified with respect to can be expressed as piecewise function of the disturbance period: 

𝑛D = |
1																 		∆𝑇 ≤ 𝜁U			
⋮ 										𝜁Z < ∆𝑇 ≤ 𝜁ZGU
𝑛>																 ∆𝑇 >𝜁&#				

 (21) 

where 𝑛D is segmented into 𝑛> regimes such that 𝑛D ∈ {1,… , 𝑛>} can be determined based on prior operation of the 

system. 𝜁9 	∀𝑗 ∈ {1,… , 𝑛>} are the corresponding disturbance period boundaries that define the how many modifiers 𝑗 

are suitable for refinement. According to equation (21), the number of inputs to be modified for (thus perturbed) could 

be tuned using the disturbance frequency. Determination of the regime boundaries 𝜁9 can be performed through 

preliminary system runs, whereby data are collected for various frequencies such that equation (21) can be fully 

defined for a given process; however, this may be impractical. 

A limitation of dMA is that the number of privileged directions must be pre-specified by the user such that 𝑛D ≤ 𝑛\. 

With the dMAIS approach, we leverage the periodicity of the disturbances to determine the number of inputs for 

adaptation as a function of the disturbance period. The following algorithm enables the systematic determination of 

𝑛D for a given disturbance period ∆𝑇 under a performance metric 𝑃𝑀 and a minimization convention. 

Algorithm 2: determination of 𝒏𝒗 for a disturbance period ∆𝑻 

 Initialize: define 𝑛D = 1, 𝑙 = 1, 𝜶, 𝑎7EF, B, 𝝁𝒈,𝒕-𝟏
𝒇 = 𝟎, 𝜺𝒈,𝒕-𝟏

𝒇 = 𝟎, 𝝁C,𝒕-𝟏
𝒇 = 𝟎. 

1.  Deploy dMAIS algorithm for 𝑛D modifiers. 

2.  𝐵 disturbance elapsed? 



 16 

a.  Yes: Calculate 𝑃𝑀 for 𝐵 previous disturbance period, go to step 3. 

b.  No: 𝑡 ← 𝑡 + ∆𝑡, go to step 2. 

3.  𝑙 > 2? 

a.  Yes: 𝑙+= 1, go to step 4. 

b.  No: 𝑙+= 1, go to step 1. 

4.  𝑃𝑀] < 𝑃𝑀]-U?  

a.  Yes: 𝑛D+= 1, go to step 1. 

b.  No: 𝑛D = 𝑙 − 1, end. 

Algorithm 2 initial assumes that only one modification direction is being used (𝑛D = 1). The user defines an allowable 

computational budget 𝐵 along with all other dMAIS operational parameters. Once 𝐵 disturbances have elapsed, 𝑅 or 

𝑃6;<W can be computed for unconstrained and constrained systems, respectively. After the initial 𝐵 disturbance 

periods, another input direction is assumed to be available; hence 𝑛D+= 1. This allows for comparison between the 

previous 𝐵 and the next 𝐵 disturbance periods on the basis of a user-defined 𝑃𝑀 whereby a modification dimension 

is added until there is no significant improvement in the process cost (assuming a minimization convention). Examples 

of performance metrics are provided in the next section for constrained and unconstrained MA-operated systems. 

4. Case studies 

The proposed scheme was tested using two case studies: the Williams-Otto CSTR (Williams and Otto, 1960) and the 

forced circulation evaporator (Lee et al., 1989). The former case study explored dMAIS on a two-input system such 

that the effect of filtering and disturbance period can be isolated and assessed on an entirely economic basis. The latter 

case study provides a setting in which to test dMAIS on a three-input system with active constraints such that the 

effect of number of adapted inputs and constraint satisfaction can be quantified on process economics and throughput, 

respectively. Moreover, the evaporator also provides a constrained setting in which to assess the proposed dMAIS 

against standard dMA. While both test systems are low-dimensional (i.e., few inputs), and the dMAIS could have 

effects on the performance of large plants through dimensionality reduction, we remark that the applicability of the 

dimensionality reduction in the dMAIS as proposed herein is in modifier refinement speed. Accordingly, both case 

studies are subjected to a variety of high-frequency (measurable) disturbances to which they use varying degrees of 

dimensionality reduction as proposed in section 3.3. Through these case studies, the economic effect of rapid modifier 

action is observed clearly, without the need for many inputs. The respective optimization problems and simulated 

plant were implemented in the Pyomo (Hart et al., 2011) environment, where the IPOPT solver (Wächter and Biegler, 

2006) was used; they were performed on an Intel core i7-4770 CPU @ 3.4 GHz. The code used to run these case 

studies can be found in https://git.uwaterloo.ca/ricardez_group/dmais. 

As stated in the introduction, we aim to improve on the aggregate performance of MA across many disturbances; 

hence, showing any iteration is not very instructive. Instead, we introduce the following performance metrics (𝑃𝑀), 

which summarize aggregate process performance over time. 

Accordingly, the cumulative process economics 𝑅($) are calculated defined as follows: 

https://git.uwaterloo.ca/ricardez_group/dmais
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𝑅 =�𝜙Z

,.

ZHI

 (22) 

where 𝑇 (𝑡𝑖𝑚𝑒) is the final scenario length and 𝜙Z are the instantaneous process economics at time 𝑘. Additionally, 

the time operating at constraint violating points is used as a measure to directly quantify constraint violation. This is 

defined as follows: 

𝑡D8<] = � ∆𝑡Z
∀Z∈{I,…,,.-U}|=/eI

 (23) 

where ∆𝑡Z are the sampling interval lengths; accordingly, the cumulative time at constraint violation over a test 

scenario is quantified. Furthermore, constraint violations influence the quantity of material processed (i.e., 

throughput); especially in cases where below-specification product may be produced. The cumulative mass of material 

process 𝑚	(𝑚𝑎𝑠𝑠) is defined as follows: 

𝑚 = � 𝑚Z
∀Z∈{I,…,,.}|=/fI

 (24) 

where 𝑚Z is the instantaneous mass throughput at time 𝑘 and the expression in equation (24) sums over constraint-

satisfying product. Lastly, the cost per mass rate 𝑃6;<W is defined using equations (22) and (24) as follows: 

𝑃6;<W =
𝑅
𝑚 (25) 

The production metrics in equations (22)-(25) are computed a posteriori to the scenarios tested for each case study. 

4.1. Williams-Otto CSTR 

The CSTR proposed by Williams and Otto, which is depicted in Figure 3, serves as a benchmark for MA. Its small 

size and nonlinearity make it a good example to examine price variation as a function of the operating conditions. 

 
Figure 3: Williams-Otto CSTR. Disturbance variables shown in red and manipulated variables in green. 

The system consists of chemical	𝐴/𝐵	as inputs,	𝐷/E as the desired products, and 𝐶/𝐺 as by-products; these undergo 

the three-reaction scheme: 

𝐴 + 𝐵
Z0→ 𝐶:	𝑘U = (1.6599 × 10g)𝑒h

-gggg.j
,1

k (26-1)  

𝐹𝐵𝐹𝐴

𝐹𝑅 , 𝑋𝐴 , 	𝑋𝐵 , 	𝑋𝐶 , 	𝑋𝐷 , 	𝑋𝐸 ,	𝑋𝐺

𝑊,𝑇𝑅
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𝐵 + 𝐶
Z2→𝐷 + 𝐸:	𝑘S = (7.2117 × 10l)𝑒h

-lmmm.m
,1

k (26-2)  

𝐶 + 𝐷
Z3→𝐺:	𝑘m = (2.6745 × 10US)𝑒h

-UUUUU
,1

k (26-3)  

where 𝑘U, 𝑘S, and 𝑘m(𝑠-U) denote the reaction rate constant and 𝑇n(𝐾) denotes the temperature of the well-mixed 

reaction. The three-reaction system corresponds to the following species dynamic material balances: 

𝑊
𝑑𝑋1
𝑑𝑡 = 𝐹1 − 𝐹n𝑋1 − 𝑘U𝑋1𝑋o𝑊 (26-4)  

𝑊
𝑑𝑋o
𝑑𝑡 = 𝐹o − 𝐹n𝑋o − 𝑘U𝑋1𝑋o𝑊− 𝑘S𝑋o𝑋p𝑊 (26-5)  

𝑊
𝑑𝑋p
𝑑𝑡 = −𝐹n𝑋p + 2𝑘U𝑋1𝑋o𝑊− 2𝑘S𝑋o𝑋p𝑊− 𝑘m𝑋p𝑋q𝑊 (26-6)  

𝑊
𝑑𝑋q
𝑑𝑡 = −𝐹n𝑋q + 𝑘S𝑋o𝑋p𝑊− 0.5𝑘m𝑋p𝑋q𝑊 (26-7)  

𝑊
𝑑𝑋r
𝑑𝑡 = −𝐹n𝑋r + 𝑘S𝑋o𝑋p𝑊 (26-8)  

𝑊
𝑑𝑋s
𝑑𝑡 = −𝐹n𝑋s + 1.5𝑘m𝑋p𝑋q𝑊 (26-9)  

where 𝑋{1,o,p,q,r,s}(𝑘𝑔/𝑘𝑔) denote the molar fraction of each species. 𝐹1 and 𝐹o(𝑘𝑔/𝑠) denote the inlet flowrates of 

𝐴 and 𝐵, respectively. 𝐹n(𝑘𝑔/𝑠) denotes the outlet flowrate, which assumes an overall molar balance (𝐹n = 𝐹1 +𝐹o) 

with a constant holdup of 𝑊 = 2104.7	𝑘𝑔.  

The model in equation (26) captures the complete species dynamics and represents the Williams-Otto plant. In addition 

to this plant model, a simplified steady-state model has also been formulated for the Williams-Otto CSTR. The 

abbreviated model omits species 𝐶 and uses the follow two-reaction scheme to approximate the system: 

𝐴 + 2𝐵
Z0→𝐷 + 𝐸:	𝑘U = (2.189 × 10l)𝑒h

-lIjj.g
,1

k (27-1)  

𝐴 + 𝐵 + 𝐷
Z2→𝐺:	𝑘S = (4.310 × 10Um)𝑒h

-UStml
,1

k 
 

(27-2)  

where all variables are defined as in equation (26) and the two-reaction scheme corresponds to the following steady-

state material balances: 

0 = 𝐹1 − 𝐹n𝑋1 − 𝑘U𝑋1𝑋oS𝑊− 𝑘S𝑋1𝑋o𝑋q𝑊 (27-3)  

0 = 𝐹o − 𝐹n𝑋o − 2𝑘U𝑋1𝑋oS𝑊− 𝑘S𝑋1𝑋o𝑋q𝑊 (27-4)  

0 = −𝐹n𝑋q + 𝑘U𝑋1𝑋oS𝑊− 𝑘S𝑋1𝑋o𝑋q𝑊 (27-5)  

0 = −𝐹n𝑋r + 𝑘U𝑋1𝑋oS𝑊 (27-6)  

0 = −𝐹n𝑋s − 3𝑘S𝑋1𝑋o𝑋q𝑊 (27-7)  

The inputs to the system are 𝒖 = [𝐹o 𝑇n], and the disturbance is 𝒅 = [𝐹1]. The nominal input and disturbance values 

for the system are 𝒖𝒏𝒐𝒎 = [6.1 366.15], and 𝒅𝒏𝒐𝒎 = [1.8]. The inputs have the bounds 𝐹o ∈ [3,6] and 𝑇n ∈
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[343.15, 373.15] and the economic objective is to maximize the profit produced by the product species. This is 

denoted using the following minimization (note the negative to convert maximization to minimization) objective 

function: 

−𝜙 = 𝐹n(1143.38𝑋q + 25.92𝑋r) − 76.23𝐹1 − 114.34𝐹o (28)  

The mismatched model in equation (27) is deployed using the regular MA and dMAIS schemes shown in Figure 1 

and Figure 2, respectively. Since only two inputs are available in this system, the dMAIS will only ever adapt with 

respect to one of them while the MA will adapt with respect to both. These competing schemes are evaluated on an 

economic basis using the cumulative profit function shown in equation (22) (i.e., 𝑃𝑀 = 𝑅). The disturbance variable 

is changed every period (∆𝑇) from the distribution 𝒅 ∼ [𝒰(0.3,3)]. All necessary 0th order system information for 

MA is assumed to be measurable and sampled every ∆𝑡 = 3	𝑚𝑖𝑛𝑢𝑡𝑒𝑠 = 1	𝑡𝑖𝑚𝑒	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙. The perturbation sizes for 

these inputs are 𝜹 = 0.001𝒖𝒕 (i.e., 0.1% of the current input value) and they are assumed to last 𝜏 = 50 time intervals. 

Three test scenarios are performed, which feature forty disturbance realizations 𝒅𝒍	∀𝑙 ∈ {1,… , 𝐵}, 𝐵 = 40, each 

occurring every ∆𝑇 sampling intervals, such that the effect of the scheme can be analyzed over a long period of time 

and over a wide range of operating conditions.  

Scenario 1 has ∆𝑇 = 250. The filter matrices in equations (9)-(11) are assumed to all use an equivalent filter constant 

𝜆. This filter constant is varied for each simulation, which features a different random disturbance sequence for each 

filter run. This allows for the performance of the scheme to be assessed across a wide array of disturbance trajectories.  

Scenario 2 sets ∆𝑇 = 250 and varies the filter constant (𝜆). However, this scenario has the same disturbance sequence 

for all filters runs. This way the efficacy of the scheme with respect to 𝜆 can be extricated from the disturbance 

trajectory. This filter is important in the performance of the scheme as it affects the speed at which the modifiers are 

updated (and can thus inhibit the speed of dMAIS). 

Scenario 3 has varying disturbance periods (∆𝑇), a filter constant of 𝜆 = 0.01, and the same disturbance sequence for 

each run. This extricates the effect of disturbance frequency on the scheme as it is designed to work best for increased 

frequencies. 

Results from Scenario 1 are summarized in Table 1, where the dMAIS outperforms the standard MA scheme for small 

filter constants based on the total process revenue; this is reflected in larger process profits 𝑅 since the W-O is a 

maximization problem. Aside from 𝜆 = 0.01, the benefit of the dMAIS scheme appears to be increasing as the 

modifiers are filtered less; this suggests that the filters indeed inhibit the speed at which the proposed scheme finds an 

economically preferable operating point. Furthermore, a break-even point between full MA and dMAIS occurs 

between 𝜆 = 0.075 and 𝜆 = 0.1 whereby full MA is best for higher filtering and dMAIS for lower. This likely occurs 

as increased filtering inhibits the ability of dMAIS to act quickly, thus eliminating its advantage over full MA. A 

conflating factor of this scenario is the random and varying disturbance sequence used for each filter run, which makes 

the improvement of the proposed scheme a function of the filter and the specific disturbance sequence; to extricate 

the former from the latter, scenario 2 keeps the same disturbance sequence for all filter runs.  
Table 1: Results for all scenarios in the Williams-Otto case study. %𝐼 denotes the percent improvement (difference) in 𝑅 of 

dMAIS with respect to MA. 

Scenario 1 Scenario 2 Scenario 3 
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𝜆 
𝑅 ($) 
MA 

𝑅 ($) 
dMAIS %𝐼 𝜆 

𝑅 ($) 
MA 

𝑅 
dMAIS %𝐼 ∆𝑇 

𝑅	($) 
MA 

𝑅 ($) 
dMAIS %𝐼 

0.01 108,988 111,719 2.50 0.01 106,784 129,272 21.06 150 46,555	 72,673	 56.10	

0.025 113,289 128,535 13.46 0.025 113,289 128,535 13.46 200 63,667	 92,379	 45.10	

0.05 127,230 138,401 8.78 0.05 114,611 128,404 12.03 250 106,784	 129,272	 21.06	

0.075 147,091 152,130 3.42 0.075 116,983 123,814 5.84 300 150,076	 115,675	 −23.26	

0.1 198,767 190,434 −4.19 0.1 122,488 117,857 −3.78     

The results from Scenario 2 are shown in Table 1, whereby the trend in improvement of the dMAIS over the standard 

MA scheme is more clearly appreciable than in Scenario 1 owed to the equivalent disturbance sequence in all filter 

runs. This is also illustrated in the time domain by Figure 4, where the cost trajectories corresponding to the filter runs 

are displayed. As shown therein, the respective process revenues of dMAIS and MA diverge as time progresses. This 

is owed to the accretion of revenue over time and would continue further for longer scenarios. As the filter constant 

is increased, the revenue dynamics of the two implementations become increasingly similar whereby the dMAIS and 

standard MA show more overlap. As in Scenario 1, a break-even point occurs between 𝜆 = 0.075 and 𝜆 = 0.1 

whereby the full MA becomes more favourable than the dMAIS as increased filtering inhibits convergence speed. 

This scenario illustrates the merit of allowing the dMAIS to adapt with respect to a single input. As exemplified by 

better performance for lower filter constants, Scenario 2 verifies the notion also observed in Scenario 1 that the 

advantage the dMAIS has over the standard MA is inhibited by aggressive filtering.  

 
Figure 4: Profit accretion profiles for Williams-Otto case study, scenario 2, increasing filter constant. 
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The results from scenario 3 are also shown in Table 1, whereby a trend of increasing improvement of dMAIS over the 

standard MA is shown for runs with decreasing disturbance periods. This is also depicted transiently in Figure 5, 

whereby the revenue trajectories diverge increasingly as the disturbance period decreases (i.e., increased disturbance 

frequency). Note that the plots in Figure 5 are compressed/elongated to show the forty disturbance periods in the same 

range despite their varying period. As in the previous scenarios, a break-even point between the two schemes exists 

between ∆𝑇 = 250 and ∆𝑇 = 300. From this, we can conclude that the input-number regime for this system from 

equation (21) is as follows: 

𝑛D = r1										 	∆𝑇 ≤ 250		
𝑛>									 ∆𝑇 >300		  (29)  

Once the disturbance period becomes sufficiently large (i.e., infrequent disturbances), the dMAIS loses its competitive 

advantage of acting quickly as the standard MA has sufficient time to approach and benefit from economically superior 

operating points. Nevertheless, for short disturbance periods, the advantage can be significant (e.g., ∆𝑇 = 150 with 

56.1% cost improvement); this exemplifies the applicability of the scheme for constantly disturbed systems as 

proposed in the outset.  

 
Figure 5: Profit accretion profiles for Williams-Otto case study, scenario 3, increasing disturbance periods 

A couple conclusions can be made from the Williams-Otto case. Firstly, the filters are found to inhibit, or conversely 

incite, the dMAIS scheme to perform better than the MA scheme through quick action. As this is a tuning parameter, 

we conclude that dMAIS should use as little filtering as possible. Moreover, the disturbance period was found to affect 

the efficacy of the dMAIS scheme as quick adaptation is more suitable for quick disturbances.  

While the Williams-Otto case-study explored herein is excellent as a benchmark as it has been used in multiple studies, 

it contains inherent features that leave some aspects of dMAIS unanswered. Firstly, it is a two-input system, which is 

the bare minimum requirement for dMAIS. While this number of inputs provides a simple way to assess the system, 
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most industrial systems have more inputs. In this case study, only one of the two inputs is chosen for adaptation; in 

other systems, a subset (as opposed to only one) input can be chosen for this task. Moreover, the Williams-Otto 

optimization problem does not require any inequality constraints to be adapted; hence, the effect of the operating point 

adjustment step was not observed; these aspects will be addressed in the next case study. 

4.2. Forced circulation evaporator 

The forced circulation evaporator, depicted in Figure 6, is another nonlinear industrial system that has been used for 

multiple model-based control and optimization studies. This system provides a different perspective from the previous 

case study as its optima occur at an active constraint, making is a good setting in which to observe potential constraint 

violations. 

 
Figure 6: Forced circulation evaporator system. Disturbance variables shown in red and manipulated variables in green. 

The dynamic evaporator system model consists of the following material balances: 

𝐻
𝑑𝑋S
𝑑𝑡 = 𝐹U𝑋U − 𝐹S𝑋S (30-1)  

𝐾
𝑑𝑃S
𝑑𝑡 = 𝐹t − 𝐹u (30-2)  

𝐹S = 𝐹U − 𝐹t (30-3)  

where 𝑋U(𝑚𝑜𝑙%) and 𝑋S(𝑚𝑜𝑙%) denote the feed and outlet product composition, respectively, and 𝑃S(𝑘𝑃𝑎) is the 

evaporator pressure. 𝐹U, 𝐹S, 𝐹t, and 𝐹u(𝑘𝑔/𝑚𝑖𝑛) denote the feed, product, uncondensed by-product, and condensed 

by-product flowrates, respectively. 𝐻 = 20	𝑘𝑔 denotes the evaporator holdup and 𝐾 = 4	𝑘𝑔/𝑘𝑃𝑎 denotes unit 

conversion constant. The energy balance over the evaporator is modelled as follows: 

𝑇S = 0.5616𝑃S − 0.3126𝑋S + 48.43    (30-4)  

𝑇m = 0.507𝑃S + 55 (30-5)  

𝐹t =
𝑄UII − 𝐹U𝐶6(𝑇S − 𝑇U)

𝜅  (30-6)  

𝑃100
(steam)	𝐹100 , 𝑇100

(feed) 𝐹1, 𝑇1, 𝑋1
𝐹3 𝐹2

𝑇2, 𝑋2 (product)

𝐹200

𝑃2

𝐹5

𝐹4, 𝑇3
𝑇200 (cooling water)

condensate

evaporator

separator
condenser
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where  𝑇U, 𝑇S, and 𝑇m(°𝐶) denote the feed, product, and recycle temperatures, respectively. 𝑄UII(𝑘𝑊) denotes the 

evaporator heat duty, 𝐶6 = 0.07(𝑘𝑊 ∙ 𝑚𝑖𝑛)/(𝑘𝑔 ∙ °𝐶) denotes a constant evaporator fluid heat capacity, and 𝜅 =

38.5	(𝑘𝑊 ∙ 𝑚𝑖𝑛)/𝑘𝑔 denotes an evaporator fluid latent heat of evaporation. The energy balance over the steam jacket 

is modelled as follows: 

𝑇UII = 0.1538𝑃UII + 90  (30-7)  

𝑄UII = 𝑈𝐴U(𝑇UII − 𝑇S) (30-8)  

𝑈𝐴U = 0.16(𝐹U + 𝐹m) (30-9)  

𝐹UII =
𝑄UII
𝜅v

 (30-10)  

where 𝑇UII(°𝐶), 𝑃UII(𝑘𝑃𝑎), and 𝐹UII(𝑘𝑔/𝑚𝑖𝑛) denote the jacket inlet saturated steam temperature, pressure, and 

flowrate. 𝑈𝐴U(𝑘𝑊/°𝐶) denotes the jacket-to-evaporator heat transfer coefficient and 𝜅v = 36.6(𝑘𝑊 ∙ 𝑚𝑖𝑛)/

𝑘𝑔	denotes the latent heat of saturated steam. The condenser is modelled as follows: 

𝑄SII =
𝑈𝐴S(𝑇m − 𝑇SII)

1 + 𝑈𝐴S
2𝐶6𝐹SII

 (30-11)  

𝐹u =
𝑄SII
𝜆  (30-12)  

where 𝑄SII(𝑘𝑊), 𝑇SII(°𝐶), and 𝐹SII(𝑘𝑔/𝑚𝑖𝑛) denote the condenser duty, temperature, and cooling water flowrate, 

respectively. 𝑈𝐴S = 6.84(𝑘𝑊/°𝐶) denotes the condenser heat transfer coefficient. 

Equation (30) represents the mechanistic (i.e., “perfect”) evaporator model. For the purposes of this study, equation 

and parameter values were changed to introduce a plant-model mismatch. Accordingly, the mismatched model uses 

𝜅 = 35.5	(𝑘𝑊 ∙ 𝑚𝑖𝑛)/𝑘𝑔 in equations (30-6) and (30-12), 𝜅v = 34.6(𝑘𝑊 ∙ 𝑚𝑖𝑛)/𝑘𝑔 in equation (30-10), and 

substitutes equation (30-9) for the following: 

𝑈𝐴U = 0.16𝐹m (31)  

Notably, the product composition is subjected to the following constraint to ensure a sufficiently high-quality product 

is generated by the evaporator: 

𝑋S ≥ 25% (32)  

The disturbance and manipulated variables for the forced circulation evaporator system are 𝒅 = [𝑋U 𝐹U 𝑇U 𝑇SII], 

and 𝒖 = [𝑃UII 𝐹SII 𝐹m],, respectively. The nominal disturbance and input values are 𝒅𝒏𝒐𝒎 = [5 10 40 25], 

and 𝒖𝒏𝒐𝒎 = [200 200 50],. The inputs have the bounds 𝑃UII ∈ [10,400], 𝐹SII ∈ [10, 400], and 𝐹m ∈ [1,100]. 

The objective of this system is to minimize the cost expressed as follows: 

𝛷 = 0.1009(𝐹S + 𝐹m) + 60𝐹SII + 60𝑃UII (33)  

The disturbance variables are changed every period (∆𝑇) from individual uniform distributions that serve as multipliers 

for the nominal disturbance values i.e., 𝒅~[𝒰(0.8,1.2) ∙ 5 𝒰(0.8,1.2) ∙ 10 𝒰(0.8,1.2) ∙ 40 𝒰(0.8,1.2) ∙ 25],. 

All necessary 0th order system information for MA is assumed to be measurable and sampled every ∆𝑡 = 1	𝑚𝑖𝑛𝑢𝑡𝑒 =

1	𝑡𝑖𝑚𝑒	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙; moreover, a varying number of modifier directions are used for different scenarios in the case study. 
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The perturbation sizes for these inputs are 𝜹 = 0.001𝒖𝒕 (i.e., 0.1% of the current input value) and assumed to last 

𝜏 = 300 time intervals. Moreover, the system is limited to only ten adjustment iterations 𝑗7EF = 10 of 𝜶 = 0.01𝒗𝒕-𝟏 

such that the next operating point update is not delayed significantly. 

A few scenarios were performed for this case study, which features ten disturbances 𝒅𝒍	∀𝑙 ∈ {1,… , 𝐵}, 𝐵 = 10, each 

occurring every ∆𝑇 sampling intervals. The disturbance period (∆𝑇), number of inputs modified with respect to (𝑛D), 

and scheme (i.e., full MA, standard MA, dMAIS) are varied such that the timing, degree, and type of modification 

can be analyzed. In addition to the full MA and dMAIS, a version of the dMAIS without the operating point adjustment 

step (blue block of Figure 2) is also deployed and denoted dMAIS(-); this scheme is impractical in practice but serves 

to observe the effect of the adjustment step for active constraints proposed in this scheme. A number after dMAIS 

denotes the number of modifiers being continually refined; for instance, dMAIS1(-) denotes that a single input is being 

modified with respect to and that the constraint adjustment scheme is not being deployed. 

The data for this scenario is shown in the appendix Table A1. Figure 7 shows the cumulative cost calculated using 

equation (22) of the competing scheme under various disturbance periods. It should be noted first that the full MA is 

unable to ever perform a single iteration in the ∆𝑇 = 2000 case; this occurs as performing 𝑛> perturbations is too 

protracted and a new disturbance always occurs before they finish. Moreover, longer disturbance periods entail longer 

simulation times, thus increasing values of 𝑅 with increasing ∆𝑇, as shown in Figure 7. Nevertheless, as observed 

therein, the full MA outperforms the dMAIS and dMAIS(-) schemes on a cumulative cost minimization basis for all 

disturbance periods where it can perform an iteration. On this cumulative cost basis, there seems to be relatively little 

difference between dMAIS and dMAIS(-) as indicated by their nearly equivalent trajectories. However, this superficial 

interpretation does not consider constraint violations, thus the economic analysis should be adjusted to consider 

process throughput. 
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Figure 7: Cost accretion profiles for evaporator case study, increasing disturbance periods. 

As outlined in the introduction, basic MA schemes do not guarantee constraint satisfaction during modifier refinement; 

moreover, as this study uses frequent periodic disturbances, the constraint satisfaction upon convergence property is 

not observed since convergence is not reached. Table 2 summarizes the cumulative time at constrain violation as 

defined in equation (23) while Figure 9 displays the throughput for all competing schemes as defined in equation (24). 

Additionally, the constrain trajectories for all scenarios can be found in Figure A1 (Appendix). In terms of times at 

constrain violation and throughput, the analysis favours the proposed scheme until the disturbance period is increased 

to ∆𝑇 = 4500. Regardless of the disturbance period, the dMAIS schemes are shown to always outperform their 

dMAIS(-) counterparts on a constraint violation and mass processed basis. This is owed to the constraint adjustment 

step, which ensures that the pre-perturbation operating point abides with the product purity requirement in equation 

(32); thus, the dMAIS iterations produce above-specification product while their dMAIS(-) equivalents may not. This 

effect of the adjustment step is further evident when comparing dMAIS to full MA whereby the former also 

outperforms the latter on constraint violation and throughput bases. As illustrated in Table 2, the cumulative time at 

constraint violation as defined in equation (23) is highest for the full MA scheme for all scenario except where the 

disturbances are sufficiently spaced at ∆𝑇 = 4000. With more frequent disturbances, even the dMAIS(-) without 

adjustments outperforms the full MA on constraint satisfaction; thus, the quick action given by the dMAIS alone is 

observed to have the effect of staying in constraint violating points for less time.  
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Table 2: Cumulative time (min) at constraint violation 𝑡𝑣𝑖𝑜𝑙 for evaporator case study, increasing disturbance periods 

 ∆𝑇 = 2000 ∆𝑇 = 2500 ∆𝑇 = 3000 ∆𝑇 = 3500 ∆𝑇 = 4000 ∆𝑇 = 4500 

MA − 240 302 328 310 281 

dMAIS2 148 176 233 237 249 286 

dMAIS2(-) 165 207 251 255 255 320 

dMAIS1 119 146 205 255 3222 349 

dMAIS1(-) 167 209 254 303 364 411 

 

Analyzing a subset of constraint trajectories from Figure A1 (Appendix) more closely, Figure 8 displays the results 

for the best (dMAIS1) scheme, its counterpart without the adjustment set (dMAIS1(-)), and the full MA scheme for 

∆𝑇 = 2500. In these trajectories, the result of the constraint adjustment step is more clearly appreciable. In several 

time instances (e.g., 𝑇~0.7, 4.6, 7.6), the adjustment step is activated to bring the composition above the quality 

constraint. The effects of the adjustment step with respect to constraint satisfaction are accrued over time, thus 

generating the operational differences between dMAIS and dMAIS(-) schemes observed in in Table 2; these will 

continue to accrue as the process operation evolves in time. 

 
Figure 8: Product quality trajectory for ∆𝑇 = 2500 scenario in evaporator case study 

Figure 9 illustrates how the number of inputs modified with respect to (𝑛D) can impact the efficacy of the dMAIS 

scheme. For short disturbance periods (i.e., ∆𝑇 = 2000, ∆𝑇 = 2500, and ∆𝑇 = 3000), the dMAIS1 (i.e., 𝑛D = 1) 

scheme are best. This occurs as the disturbance happen frequently enough to require more iterations of the dMAIS 

that are facilitated by the dMAIS1 schemes. For intermediate disturbance periods (i.e., ∆𝑇 = 3500 and ∆𝑇 = 4000), 

the dMAIS2 (i.e., 𝑛D = 2) scheme is the best. In this case, the disturbances happen less frequently as to allow for more 

iterations of the dMAIS schemes performed in dMAIS2; however, they still occur frequently enough as to not favour 
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the full MA scheme. Furthermore, for long disturbance periods (i.e., ∆𝑇 = 4500), the full MA scheme dominates as 

enough time between disturbances occurs for the full MA to arrive near the plant optima. 

 
Figure 9: Material production profiles for evaporator case study, increasing disturbance periods 

Figure 10 summarizes the aggregate effect of cost (Figure 7) and throughput (Figure 9) as defined in equation (25) 

(i.e., 𝑃𝑀 = 𝑃6;<W). As with the throughput, a clear pattern emerges whereby the dMAIS schemes are superior to the 

dMAIS(-) schemes, which are superior to the full MA scheme. Thus, for the evaporator case, the following regimes 

are established for the number of inputs modified with respect to: 

𝑛D = ¬
1									 							∆𝑇 ≤ 3000
2 3500 < ∆𝑇 ≤ 4000
𝑛>														 		∆𝑇 >4000			

 (34)  
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Figure 10: Cost per unit weight for evaporator case study, increasing disturbance periods 

In contrast to the William-Otto scenario, the evaporator exemplifies the potential economic importance of producing 

constraint-adhering product as affected by increased production. Moreover, we observe the effect of different number 

of input modifications more concretely and its relationship to the disturbance period. 

While dMAIS was shown to outperform the traditional MA scheme in the case of frequent periodic disturbances, 

many MA variants could have similar benefits to dMAIS under these conditions; one such variant is dMA (Costello 

et al., 2016). As noted previously, dMA can choose multi-input directions for adaptation but requires the one-time 

local computation of a parameter/input sensitivity matrix. While dMAIS can only use single-input adaptation 

directions, sensitivities are computed locally; thus, a potential tradeoff is present between the schemes, making them 

apt for comparison. 

After determining the suitable number of modifier directions (i.e., 𝑛D = 1) using algorithm 2 for a disturbance period 

of ∆𝑇 =2000, several dMA scenarios were performed for the same ten-disturbance sequence was imposed on the 

dMAIS. The results from the dMA approach can be found in Table 3 whereby each scenario differs in the point around 

which the model sensitivity matrix is identified (as noted in Costello et al., 2016; this matrix is required for determining 

the privileged dMA directions 𝑼𝒕. 
Table 3: Performance of dMA scenarios with sensitivity matrix calculated at different operating point,  𝑛% = 1, and ∆𝑇 = 2000. 

Scenario Sensitivity matrix point 𝑹	($) 𝒎(𝒌𝒈) 𝑷𝒑𝒓𝒐𝒅	($/𝒌𝒈) 
1 𝒅 = [6.0 9.8 37.9 23.2], 

𝒖 = [350 200 40], 6926.08 38404.97 0.180 
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2 𝒅 = [4.1 12.7 37.1 23. 5], 
𝒖 = [350 200 50], 6314.30 24860.15 0.254 

3 𝒅 = [5.1 9.7 51.0 20.9], 
𝒖 = [166 183 98], 7004.76 38474.18 0.182 

4 𝒅 = [5.1 12.9 37.0 23.2], 
𝒖 = [390 200 50], 6724.96 33030.24 0.204 

5 𝒅 = [5.2 8.8 49.8 24], 
𝒖 = [148 133 95], 7024.16 38483.14 0.182 

6 𝒅 = [5.6 8.4 43.3 24.5], 
𝒖 = [335 80 32], 6418.26 28182.64 0.228 

7 𝒅 = [4.1 9.6 46.7 22.8], 
𝒖 = [324 150 54], 6928.07 36818.15 0.188 

8 𝒅 = [5.8 8.8 54.0 28.3], 
𝒖 = [218 126 41], 6477.56 30165.92 0.21 

dMA average − 6727.27 33552.42 0.204 
dMAIS − 5827.37 30852.88 0.189 

 

As shown in Table 3, and Figure A2 in the appendix, the performance of the dMA scheme on the evaporator is highly 

dependent on which point the sensitivity matrix is computed through the direction it chooses. Compared to the dMAIS, 

which is not dependent on this matrix, the dMA can perform moderately better (e.g., scenario 1; ~4.8% improvement) 

or significantly worse (e.g., scenario 2; ~34.4% deterioration). Note that dMAIS does not rely on a parameter 

distribution being known a priori, thus this assumption is alleviated by the proposed approach. Moreover, the potential 

variability in performance owed to the sensitivity matrix point is abated by using dMAIS. On aggregate, dMAIS 

outperforms dMA (~7.4% improvement in using dMAIS over the average in dMA), as shown in Table 3. Conversely, 

the dMA is shown to be able to outperform dMAIS if the sensitivity matrix is computed at an adequate point; thus, 

there is a tradeoff in the two schemes between average and variability in performance. We note that superiority of 

dMAIS over dMA is not necessarily generalizable and may be dependent on the case study under consideration. As 

discussed above, this is mostly owed to the use of multi-input directions compared to the ability to update directions 

online.  

5. Conclusion and future works 

MA is a commonly used method to abate model uncertainty, but its gradient estimation step can cause delays in the 

update of operating points. Accordingly, the dMAIS scheme presented herein only modifies with respect to a subset 

of the inputs chosen using the modified cost metric. This subset is refined as the dMAIS scheme progresses such that 

the modifications are chosen to have the largest effect on the process economics. Additionally, dMAIS employs an 

operating point adjustment step, which drives constraint-violating systems into constraint adhering regions prior to 

the perturbation step. Using the dMAIS scheme, constraint satisfaction is improved as the modifiers are being refined. 

The proposed scheme was deployed on the Williams-Otto plant where it was found to be superior to the full MA for 

small disturbance periods and small filter constants; thus, leveraging modifier refinement speed to its economic 

advantage. Moreover, the dMAIS scheme was deployed for an evaporator case study with active constraints whereby 

it was shown to increase material throughput through decreased constraint violation compared to the full MA. 

Increased throughput was shown to also result in improved process economics. The evaporator case also exemplified 

how the best number of modifiers is dependent on the disturbance period such that different numbers of modifiers can 
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be used in different disturbance regimes. With respect to standard dMA, dMAIS was found to lead to an average 

performance improvement in the evaporator owed to its lack of dependence on the initial sensitivity matrix. 

Conversely, some dMA scenarios were found to outperform dMAIS if the initial sensitivity matrix was computed 

around certain operating points; thus, there is a tradeoff in robustness and performance between the two methods. 

The dMAIS scheme proposed in this work have been implemented using the traditional perturbation method; however, 

gradients acquisition can be made more efficient through dual MA. Future works will also investigate the joint use of 

dMAIS and dual MA, which could lead to further benefits in speeding up modifier refinement. The dMAIS scheme 

can be inhibited by filtering, this limits its applicability to low noise environments; thus, an alternative noise abatement 

scheme must be proposed to make the scheme suited to noisy measurements (e.g., Patrón and Ricardez-Sandoval, 

2022b). Furthermore, the scheme proposed herein was only tested in systems whereby preliminary runs may be 

performed for tuning; this may not be achievable or desirable in all systems. Accordingly, online tuning and tuning 

budget sizing for dMAIS requires further attention. Lastly, the case studies presented in this work were selected such 

that they provide clear illustrations of the benefits and limitations of the proposed scheme. However, industrial plants 

are usually more complex; future works will thus deploy dMAIS in high-dimensional constrained chemical plants 

(i.e., those involving many inputs and constraints). 
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Nomenclature 
 

dMAIS /MA schemes Subscripts and superscripts 
Percent improvement %𝑰 Active constraints 𝑎𝑐𝑡 
Matrix of ones 𝟏 Filtered quantity 𝑓 
Maximum adjustment iterations 𝑎7EF Constraint quantity 𝑔 
Active constraint indicator matrix 𝑨 Index for constraints 𝑖 
Computational budget 𝐵 Inactive constraints 𝑖𝑛 
Disturbances 𝒅 Index for inputs 𝑗 
Process model 𝒇 Index for time 𝑘 
Plant 𝒇𝒑 Index for disturbances elapsed 𝑙 
Constraints 𝒈 Lower bound 𝑙𝑏 
Identity matrix 𝑰 Model quantity 𝑚 
Jacobian matrix 𝑱 Modified formulation 𝑀𝐴 
Mass of material processed 𝑚 Nominal quantity 𝑛𝑜𝑚 
Number of  𝑛 Ordered vector 𝑜𝑟𝑑 
Number of MA iterations to 
convergence 

𝑛01 Process (sampled) quantity 𝑝 

Number of dMAIS iterations to 
convergence 

𝑛W01XY Perturbed quantity 𝑝𝑒𝑟𝑡 

Process economics per unit mass 𝑃6;<W Directionally modified formulation 
with input selection 

𝑑𝑀𝐴𝐼𝑆 

Constraint violation matrix 𝑸 Current time 𝑡 
Total process economics 𝑅 Upper bound 𝑢𝑏 
Cumulative time violating constraints 𝑡D8<] Objective function quantity 𝜙 
Input vector 𝒖 Upon convergence ∞ 
Ordered set of inputs 𝑈   
dMA direction matrix 𝑼 Williams-Otto plant 
dMAIS modified input vector 𝒗 Mass flowrate of streams {𝐴, 𝐵, 𝑅} 𝐹{1,o,n} 
Set of inputs used for modification 𝑉 Rate of reactions {1,2,3} 𝑘{U,S,m} 
dMAIS direction matrix 𝑽 Mass holdup 𝑊 
dMAIS inputs not used for 
modification 

𝒘 Mass fraction of species 
{𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐺} 

𝑋{1,o,p,q,r,s} 

Set of inputs not used for modification 𝑊   
States 𝒙 Evaporator plant 
Adjustment bounds 𝜶 Fluid heat capacity 𝐶6 
Perturbation size 𝛿 Molar flowrate of streams 

{1,2,3,4,5,100,200} 
𝐹{U,S,m,t,u,UII,SII} 

Sampling interval ∆𝑡 Pressure of streams {2,100} 𝐹{S,UII} 
Disturbance period ∆𝑇 Evaporator heat duty 𝑄UII 
0th order modifiers 𝜺 Evaporator holdup 𝐻 
Boundary for number of updated 
modifiers 

𝜻 Unit conversion constant 𝐾 

Filter matrices 𝝀 Condenser heat duty 𝑄SII 
1st order modifiers 𝝁 Temperature of streams 

{1,2,3,100,200} 
𝑇{U,S,m,UII,SII} 

1st order modifiers refined in dMAIS 𝜸 Jacket-evaporator heat transfer 
coefficient 

𝑈𝐴U 

Perturbation time τ Condenser heat transfer coefficient 𝑈𝐴S 
Operating point change transient time Τ Mole percent of species {1,2} 𝑋{U,S} 
Economic objective function 𝜙 Fluid latent heat of evaporation 𝜅 
1st order modifiers not refined in 
dMAIS 

𝝎 Steam latent heat of evaporation 𝜅v 
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Appendix 
Table A1: Data for the evaporator scenario. 

 Mean processing cost �̧�($/𝑘𝑔) Mass processed 𝑚× 10m(𝑘𝑔) 

𝑇 
MA 

dMAIS

2 

dMAIS

2(-) 

dMAIS

1 

dMAIS

1(-) 
MA 

dMAIS

2 

dMAIS

2(-) 

dMAIS

1 

dMAIS

1(-) 

2000 𝑁/𝐴 654 728 566 566 𝑁/𝐴 481	 535	 473	 617	

2500 724 613 694 	540 	540 524 601	 695	 	590	 778	

3000 764 644 691 593 593 603 723	 769	 694	 845	

3500 690 579 614 622 622 789 969	 1,029	 792	 940	

4000 600 558 573 669 669 1,057 	1,215	 1,236	 857	 998	

4500 526 535 595 644 644 1,413 	1,267	 1,401	 966	 1,168	

 
Figure A1: Constraint trajectories for evaporator case, increasing disturbance periods 
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Figure A2: Profit rate (top) and constraint (bottom) for the evaporator case study under dMAIS, dMA (scenario 1), and dMA 

(scenario 2) 


