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Abstract— Real-time optimization (RTO) is a model-based 
approach for generating economically optimal steady-state 
process set points. The process model used in RTO requires 
reconciliation with the plant through parameter estimation, 
which uses online measurements. In the presence of sensor faults 
causing measurement bias, the estimation layer can result in 
suboptimal set points that may violate safety, environmental, or 
operational constraints. Herein, a gross error detection 
approach is proposed to determine measurement sets that 
exclude faults, thus avoiding estimation errors propagating to 
the set points and ensuring safe operation. This is achieved by 
computing parameter estimate samples offline using varying 
measurement combinations and bootstrapping available plant 
data. The resulting parameter estimates are subjected to single-
sample t-tests to determine which estimates are significantly 
different; these correspond to the measurement that have the 
highest probability of being faulty. The computational 
complexity of the algorithm is discussed, whereby it is shown to 
be related to the observability criteria and number of 
measurements. A continuously stirred tank reactor with an 
upper bound on heat generation is used to exemplify the 
proposed approach in a process safety setting. The incidence of 
constraint-violating operation is observed to decrease in both 
frequency and severity when using the proposed framework; 
thus, the resulting set points are economical while ensuring safe 
heating limits are respected during operation. 

I. INTRODUCTION 

In increasingly competitive production environments, the 
model-based economic optimization of process systems can 
provide competitive advantages to operators. Real-time 
optimization (RTO) has emerged as the foremost option for 
economic optimization in both academia and industry [1] with 
applications in fuel cells [2], polymerization [3], and carbon 
capture [4]. RTO uses a steady-state process model to generate 
set points that a control layer can track; these are updated 
periodically or upon the detection of disturbances. Highly 
detailed mechanistic models are typically used in RTO; despite 
this, simplifying assumptions must be made such that models 
can be evaluated by conventional optimization solvers. These 
model simplifications lead to plant-model mismatch, which 
must be addressed by adapting the model within the RTO 
procedure to reconcile it with the plant. Two adaptation 
strategies are common in RTO: the “two-step” procedure for 
parametric uncertainty [5] and the “modifier adaptation” 
procedure for structural uncertainty; the former is more 
commonly used and is the topic of the present study, the reader 
is referred to [6] for information on the latter. In cases of 
parametric mismatch when the two-step RTO procedure is 
used, a parameter estimation (PE) layer uses steady-state 
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measurements to update the model prior to solving the 
economic optimization problem. On a shorter timescale, the 
process controller regulates the plant towards the RTO-
supplied set points. This procedure is depicted in Fig.1. 

The typical RTO architecture is crucially reliant on the 
measurements acquired from the plant, making it vulnerable to 
noise and faults (i.e., random and systematic errors). The 
propagation of these errors to the PE layer, and subsequently 
to the set points, can cause economic suboptimalities as well 
as constraint violations. In the latter case, constraints can 
include safety requirements that ensure the continued 
operation and well-being of plant operators and equipment; 
violating these constraints can have severe consequences such 
as injury or equipment damage, respectively.  

A few techniques have been proposed to abate the effect of 
these errors (robust estimators) and identify where they occur 
(gross error detection, GED). Generally, hypothesis testing is 
used for identifying measurements containing gross errors. 
This requires a measurement baseline in which no gross error 
is present [7] along with constant observation of measurements 
to capture potential drift. More recent approaches have used 
optimal data reconciliation to ensure measurements are 
consistent with the model before being used for PE [8]. The 
use of robust estimators (e.g., [8]) abates the effect of 
measurement bias on parameters; however, they do not 
identify where a fault is located, nor do they fully eliminate its 
effects. Moreover, the modified iterative measurement test 
(MIMT) [9] uses residuals from a least-squares data 
reconciliation procedure along with statistical hypothesis 
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Figure 1. Typical two-step RTO procedure. 
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testing to sequentially eliminate outlier estimates; however, 
this method requires local linearized constraints to be 
estimated to generate a residual covariance matrix. 

The work presented herein builds on the existing GED 
literature by proposing a new scheme that leverages modern 
computational power and is readily retrofitted into existing 
RTO systems (i.e., no additional experiments, layers, or 
samples are necessary). We propose constructing bootstrapped 
parameter estimate samples that can be used for determining 
measurement subsets that lead to significant differences in 
parameter estimates, thus are likely to contain gross errors. In 
contrast to previously GED schemes, the present work takes a 
parameter-driven approach to identifying faults. That is, faults 
are not detected until they significantly propagate to the 
parameter estimates (and resultantly, the set points). The focus 
on parameters constitutes a novelty in the process GED 
literature where the effect of the faults on plant optimality are 
prioritized through economics and constraints. Such an 
emphasis on constraints is crucial in processes where safe 
operation must be ensured. 

This study is structured as follows: section II outlines the 
standard two-step RTO formulations; section III details and 
discusses the bootstrapped GED method; section IV provides 
a CSTR case study that compares the performance of the 
proposed scheme against the traditional RTO in a safety-
constrained setting; section V summarizes key findings from 
this work.  

II. TWO-STEP RTO FORMULATIONS 

A. Preliminaries 
Scalar quantities are denoted as unbolded while 

vector/matrix quantities are bolded. ‖𝒂‖𝑩
" denotes a quadratic 

form on an 𝑛-dimensional vector 𝒂 ∈ ℝ# with an (𝑛 × 𝑛)-
dimensional weighting matrix 𝑩 ∈ ℝ#×#. ‖𝒂‖% denotes the 
infinity-norm (i.e., maximum norm) on a vector.	{𝒂𝒕}'()*  
denotes a sample of 𝑇 observations of vector	𝒂 acquired over 
the sampling periods 𝑡 ∈ {ℤ|1 ≤ 𝑡 ≤ 𝑇}. 𝒂2 denotes the 
sample-averaged mean of {𝒂𝒕}'()*  (i.e., 𝒂2 = )

*
∑ 𝒂𝒕*
'() ). The 

sample vector covariance matrix (𝑸𝒂 ∈ ℝ#×#) has elements 
computed as 𝑄,,.,/ =

)
*
∑ (𝑎,,' − 𝑎:,)(𝑎.,' − 𝑎:.)*
'()  where 𝑎,,' 

and 𝑎.,' are the 𝑖'0 and 𝑗'0 components of 𝒂.  

Sets are denoted in script (e.g., ℳ).	𝒫(ℳ) denotes the 
power set of ℳ while 𝒮 = 	𝒫1(ℳ) denotes the subsets of the 
power set of ℳ with cardinality 𝐾. 𝒮. = {𝒮|𝑗 ∈ 𝒮} denotes the 
subsets of 𝒮 that contain the element 𝑗. This set notation is used 
for denoting measurements and operations on measurements; 

an example is shown in Fig. 2 for clarity. \ denotes the set 
difference, i.e. ℳ\𝑗 = {ℳ|𝑗 ∉ ℳ}. 

B. Economic Optimization Layer 
The steady-state economic optimization problem used 

within the two-layer RTO scheme is posed as follows: 

min
𝒚𝒔𝒑(𝒚3

𝜙(𝒙H)

𝑠. 𝑡.
𝒇L𝒅, 𝒖, 𝒙H, 𝒚H, 𝜽RS = 0
𝒈(𝒅, 𝒖, 𝒙H) ≤ 0

𝒖 ∈ 𝓤
𝒚 ∈ 𝓨

 (1)  

where 𝜙:ℝ## → ℝ is an economic objective to be optimized 
(cost minimization is taken as the standard convention). The 
process economic objective maps the model-predicted process 
states 𝒙H ∈ ℝ## to a scalar cost function. The economic 
objective is subject to the steady-state model 𝒇:ℝ#$ ×ℝ#% ×
ℝ#& → ℝ## ×ℝ#', which maps the process disturbances 
𝒅 ∈ ℝ#$, inputs 𝒖 ∈ ℝ#%, and model parameters 𝜽R ∈ ℝ#& to 
the predicted states and controlled variables 𝒚H ∈ ℝ#' of the 
system. The economically optimal controlled variables are the 
decision variables for the RTO problem, whereby they are 
passed to the control layer as set points (𝒚𝒔𝒑 = 𝒚H). 
Accordingly, the controlled variables and their corresponding 
manipulated variables are bounded within the user-defined 
feasible regions 𝓨 and 𝓤, respectively. In addition to the 
bounds, the RTO can also be given additional constraints 
𝒈:ℝ#$ ×ℝ#% ×ℝ## → ℝ#(; these can include safety or 
quality constraints. The quality of the model predictions, thus 
the fidelity of the RTO-defined set points to the true plant 
optima, and the adherence to constraints, are dependent on 𝜽R.  

C. Parameter Adaptation Layer 
To ensure good agreement with the plant, a PE problem is 

executed to update the RTO model prior to finding an 
economic solution. The PE problem is posed as follows: 

min
𝜽7
‖𝒛[ − 𝒛:‖𝑸𝒛*+

"

𝒇L𝒅, 𝒖, 𝒙H, 𝒚H, 𝜽RS = 𝟎
𝒉(𝒙H) = 𝒛[
𝜽R ∈ 𝜣

 (2)  

where all variables are defined as in (1). Additionally, an 
observation model 𝒉:ℝ## → ℝ#, maps the model-predicted 
states to measurement predictions 𝒛[ ∈ ℝ#, and the feasible 
region	𝜣 is defined for the model parameters, which are the 
decision variables for the PE problem. The objective function 
in (2) minimizes the difference between the sample-averaged 
steady-state measurements and the model measurement 
predictions such that the plant and model are reconciled 
through the parameters estimates. 

III. BOOTSTRAPPED GROSS ERROR DETECTION 

A gross error detection approach is proposed, whereby the 
measurement exclusion [10] and data bootstrapping principles 
[11] are extended to an RTO and GED context using a novel 
parameter hypothesis testing approach. The proposed scheme 
creates parameter samples through measurement exclusion, 

ℳ = 𝑧1 , 𝑧2 , 𝑧3
𝒫(ℳ) = { 	 , 𝑧1 , 𝑧2 , 𝑧3 , 𝑧1 , 𝑧2 , 𝑧1 , 𝑧3 , 𝑧2 , 𝑧3 , {𝑧1 , 𝑧2 , 𝑧3}}

𝒮 = 𝒫2	(ℳ) = { 𝑧1 , 𝑧2 , 𝑧1 , 𝑧3 , 𝑧2 , 𝑧3 }
𝒮𝑧1 = { 𝑧1 , 𝑧2 , 𝑧1 , 𝑧3 }

𝑧1 , 𝑧2
𝑧1 , 𝑧3

𝑧1 𝑧2
𝑧3

𝑧2 , 𝑧3

𝒛𝒕=𝑴 𝒛𝒕=𝑴−𝟏 𝒛𝒕=𝟎𝒛𝒕=𝟏⋯

⋮

𝜽𝒕=𝟎:
𝜽𝒕=𝟏:

𝜽𝒕=𝑴−𝟏:

 Figure 2. Example of three-measurement set and associated operations. 

 



  

from which measurements that result in statistically erroneous 
parameters can be identified. By applying a parameter-driven 
technique to GED, the aim of the proposed algorithm is to 
ensure optimal and safe RTO performance. The scheme makes 
the following assumptions: 

1. The measurement noise is Gaussian, which is necessary 
condition for the least-squares estimation formulation 
presented in (2). 

2. The plant Karush-Kuhn-Tucker (KKT) conditions can be 
fulfilled by the joint PE/RTO procedure [5]. 

3. The faults manifest through a recurring measurement bias. 

A.  Bootstrapping Available Data 
The proposed scheme is designed for retrofitting existing 

RTO systems. Accordingly, it is assumed that the steady-state 
sample size is defined for the existing RTO a priori as 𝑀. With 
𝑀 observations, 𝑀 parameter estimates (i.e., `𝜽R𝒕a'()

9
) can be 

generated by re-sampling and using 𝑀− 1 measurements in 
the RTO averaging procedure (i.e., calculation of 𝒛: and 𝑸𝒛). 
Each estimate is generated by removing a single observation 
and resampling the remaining 𝑀− 1 points. As shown in Fig. 
3, each colour represents a different measurement sample. The 
blue sample generates 𝜽R𝒕(𝟏 by excluding the sample point 
𝒛𝒕(𝟏, and the red sample generates 𝜽R𝒕(𝟐 by excluding 𝒛𝒕(𝟐; 
this exclusion and re-sampling procedure is repeated until 
`𝜽R𝒕a'()

9
 is completed with the green sample that excludes 

𝒛𝒕(𝑴. By following this procedure, estimate statistics can be 
constructed such that hypothesis testing can be applied to the 
estimate sample.  

B. Identifying Faults 
The bootstrapped parameter estimate procedure is applied 

to various measurement sets. Given the complete set of 
measurement ℳ = {𝑧), … , 𝑧#,}, a given number (𝑛1) of 
subsets with cardinality 𝐾 are possible to construct. Partial 
measurement vectors are accordingly defined as 𝜻𝒊 ∈ ℝ1 
where 𝑖 ∈ 𝒮 and 𝒮 = 	𝒫1(ℳ) as defined previously. Each 
partial measurement vector, and their corresponding steady-
state samples `𝜻𝒊𝒕a'()

9
, are used to generate estimate samples 

`𝜽R𝒊𝒕a'()
9

 following the boostrapping procedure outlined in the 
previous section. From these, sample-averaged parameter 
means for each measurement subset are computed (i.e., 𝜽2𝒊). 

For 𝜽2𝒊	∀𝑖 ∈ 𝒮, the following single-sample hypothesis test 
is performed:  

𝐻?:	𝜽2 = 𝜽2𝒊 

𝐻):	𝜽2 ≠ 𝜽2𝒊 
(3)  

where 𝜽2 = )
#-
∑ 𝜽2𝒊,∈A  are the measurement subset-averaged 

parameter values. The null hypothesis assumes that each 
individual sample-averaged parameter is equivalent to the 
measurement subset-averaged parameter; this would be the 
case if a fault were not contained within the tested 
measurement set as it would not propagate to the estimates. 
The alternative hypothesis accounts for potential differences 
in sample-averaged parameters and measurement subset-
averaged parameters; this indicates that a fault is present and 

therefore would propagate to the RTO. Each hypothesis test 
generates a two-sided t-test p-value for its corresponding 
measurement set and model parameters. The vectors 𝑷𝒊 ∈
ℝ#& 	∀𝑖 ∈ 𝒮 contain the p-values associated with the samples 
of 𝑛B parameter estimates, which are generated using 
bootstrapped samples of the partial measurement set 𝑖. These 
p-values determine whether parameters generated by a given 
measurement set are within the true parameter distribution 
given a chosen significance level	𝛼, which is the critical value 
for the hypothesis test. 

A single parameter estimate generated using an arbitrary 
measurement set 𝑖 is identified as erroneous if 	
𝑃,,B < 𝛼. This is extended to multi-parameter systems by 
imposing the condition that a vector of parameters is identified 
as erroneous if any parameter within it is erroneous. Moreover, 
this criterion must apply for cases with many measurements 
ℳ. For a measurement to be deemed erroneous, all partial 
measurement subsets containing the measurement 𝑗 (i.e., 𝒮.) 
must fulfill the alternative hypothesis. Accordingly, in a multi-
parameter and multi-measurement setting, 𝐻? is rejected if the 
following condition holds: 

‖−𝑷𝒊‖% > −𝛼, ∀𝑖 ∈ 𝒮. (4)  

such that the measurement 𝑗 contains the fault as identified in 
its parameter estimates. The negative of the maximum norm 
finds the minimum element in the vector 𝑷𝒊 and the inequality 
identifies whether the minimum element is smaller than the 
significance threshold 𝛼 (i.e., the minimum element is larger 
than −𝛼). Accordingly, a single parameter from the parameter 
vector corresponding to each member of 𝒮. must be identified 
as erroneous for a fault to be detected.  

 If criterion (4) is fulfilled, then it is used sequentially on the 
measurements within ℳ whereby the measurement 𝑗 that has 
the highest probability of being erroneous (i.e., smallest p-
value/largest negative p-value) is removed, i.e.: 

𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥{‖−𝑷𝒊‖%|∀𝑖 ∈ 𝒮.|∀𝑗 ∈ ℳ} (5)  

 Once 𝑗 is identified, it is removed from the measurement set 
thereafter (i.e., ℳ ←ℳ\𝑗) and the hypothesis testing 
procedure is repeated by calculating a new subset-averaged 
parameter mean (𝜽2) excluding 𝑗. This continues until criterion 
(4) is no longer fulfilled, thus there are no remaining faults that 
propagate to the parameter estimates since all measurement 
combinations yield statistically similar parameters. This is a 
key difference in the present bootstrapped GED with respect 
to past GED schemes; since the hypothesis testing is 
parameter-driven, faults are not identified unless they have a 
significant effect on the RTO through the parameter estimates.  

 The algorithm proposed in this work is summarized in Fig. 
4. Firstly, the acquired measurement sample is used for the 

Figure 3. Parameter estimate bootstrapping. 

𝒛𝒕=𝑴 𝒛𝒕=𝑴−𝟏 𝒛𝒕=𝟏𝒛𝒕=𝟐⋯

⋮

𝜽𝒕=𝟏:

𝜽𝒕=𝟐:

𝜽𝒕=𝑴:

𝒛𝒕=𝟏𝒛𝒕=𝑴 𝒛𝒕=𝑴−𝟏 𝒛𝒕=𝟐⋯

𝒛𝒕=𝑴−𝟏 𝒛𝒕=𝟏𝒛𝒕=𝟐⋯𝒛𝒕=𝑴



  

bootstrapping procedure to generate parameter estimate 
samples assuming different measurement subsets in 𝒮. 
Secondly, the measurement subset generated parameter 
samples ̀ 𝜽R𝒊𝒕a'()

9
undergo hypothesis testing with respect to the 

subset-averaged parameter means 𝜽2. If all measurement 
subsets containing a given measurement type are found to be 
significantly different, then that measurement type is flagged 
as faulty and excluded from the RTO procedure. This is 
repeated until all measurement subsets are found to yield 
statistically similar parameters at which point, lastly, the RTO 
is computed with the faultless measurements. 

C. Computational Complexity 
The size of measurement set is determined by the 

observability criteria of the system whereby 𝑛C,D,# is the a 
priori determined minimum number of measurements to retain 
parameter observability. The observability requirement has the 
corollary that 𝑛C > 𝑛C,D,# for the proposed approach to be 
deployed (i.e., at least one measurement can be excluded). 
Accordingly, in a system with 𝑛C sensors, 𝑛C choose 𝑛C,D,# 
combinations can be used to generate parameter estimates, i.e.: 

𝑛1L𝑛C, 𝑛C,D,#S =
𝑛C!

𝑛C,D,#! L𝑛C − 𝑛C,D,#S!
 (6)  

We define 𝐾 = 𝑛C,D,# from section IIIB such that the 
number of subsets of  𝑛C,D,# cardinality to ensure that the 
algorithm defined in the previous section ensures observability 
is  𝑛1 as per (6). The bootstrapping procedure thus requires 
𝑛EF = 𝑛1 ×𝑀 parameter estimation problems to be solved. 
Accordingly, the computational effort scales factorially with 
the number of measurements and inversely factorial with the 
observability requirements. The number of measurements thus 
determines the dominant computational cost of the proposed 
scheme as the hypothesis testing time is negligible in 
comparison to the bootstrap time. For many cases 𝑛C,D,# = 𝑛B 
is required for observability. However, for situations with 
many measurements, 𝑛C,D,# can be assumed to be higher than 
that needed for observability; this could decrease the 
computational effort required at the expense of fault specificity 
(i.e., measurements would have to be lumped into groups).  

IV. CSTR CASE STUDY 

A. CSTR Model 
The proposed approach is deployed on a two-reaction 

CSTR [12], where feeds of reactants 𝐴 and 𝐵 generate	𝐶 with 
𝐷 as a byproduct. The system is modelled as follows: 

𝑑𝐶G
𝑑𝑡 = −𝑘)𝐶G𝐶H +

𝑢G
𝑉 𝐶G,,# − |

𝑢G + 𝑢H
𝑉 }𝐶G (7)  

𝑑𝐶H
𝑑𝑡 = −𝑘)𝐶G𝐶H − 2𝑘"𝐶H" +

𝑢H
𝑉 𝐶H,,# 

−|
𝑢G + 𝑢H

𝑉 }𝐶H 
(8)  

𝑑𝐶I
𝑑𝑡 = 𝑘)𝐶G𝐶H − |

𝑢G + 𝑢H
𝑉 }𝐶I (9)  

𝑑𝐶J
𝑑𝑡 = 𝑘"𝐶H" − |

𝑢G + 𝑢H
𝑉 }𝐶J (10)  

𝑄 = 𝑉𝑘)𝐶G𝐶H(−∆𝐻K,)) + 𝑉𝑘"𝐶H"(−∆𝐻K,") (11)  

𝐷 =
𝐶J

𝐶G + 𝐶H + 𝐶I + 𝐶J
 (12)  

where 𝐶G, 𝐶H,	𝐶I, and	𝐶J(𝑚𝑜𝑙/𝐿)	denote the concentrations 
of the constituent species. 𝑄(𝑘𝑐𝑎𝑙/𝑚𝑖𝑛) and 𝐷(𝑚𝑜𝑙/𝑚𝑜𝑙) 
denote the heat generated by the reactions and the selectivity 
to species 𝐷, respectively. 𝑢G and 𝑢H(𝐿/𝑚𝑖𝑛) denote the feed 
flowrates, which are the process manipulated variables. 
𝐶G,,# = 2 and 𝐶H,,# = 1.5	𝑚𝑜𝑙/𝐿 are the inlet concentrations 
of feeds. 𝑘) = 0.75 and 𝑘" = 1.5	𝐿/(𝑚𝑜𝑙 ∙ 𝑚𝑖𝑛) are the 
reaction rate constants, while L−∆𝐻K,)S = 3.5 and 
L−∆𝐻K,"S = 1.5	𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 are the reaction enthalpies. 𝑉 =
500	𝐿 is the reactor volume. 

B. CSTR Economic Optimization Formulation 
The model described by (7)–(12) is used to represent the 

steady-state plant and deployed as 𝒇 for the RTO problem (1). 
The following constraints (𝒈) are imposed on the RTO: 

𝑄 ≤ 𝑄D/L (13)  
𝐷 ≤ 𝐷D/L (14)  

where 𝑄D/L and 𝐷D/L are maximal heat generation and 
selectivity, respectively. While (13) is related to safety, (14) is 
a product quality (i.e., purity) constraint; both aspects of 
operation must be fulfilled to continually generate a 
commercially viable product from this process. While a 
below-grade product is undesirable, it may be re-processed; 
however, unsafe operation can have lasting effects ranging 
from lost productivity in the event of a shutdown to injury in 
the event of operator exposure. Thus, it is crucial to satisfy this 
heating constraint to avoid long-term losses.  

The manipulated variables (feed flowrates) are constrained 
as 𝓤 = {(𝑢G, 𝑢H)|0 ≤ 𝑢G, 𝑢H ≤ 𝑢D/L}. Perfect control is 
assumed (i.e., the set points can be reached by the control 
layer); thus, the manipulated variable bounds serve to 
construct the feasible region for the RTO problem. An 
objective function that maximizes productivity of product 𝐶 
while minimizing the control effort is considered; this is 
expressed as follows: 

 Figure 4. Bootstrapped RTO+GED algorithm. 

𝜽𝒊∀𝑖 ∈ 𝒮

𝑷𝒊∀𝑖 ∈ 𝒮
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{𝜽𝒊𝒕}𝑡=1
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Collect 𝑀 steady-state measurements

Construct par2al measurement vectors 

𝜻𝒊∀𝑖 ∈ 𝒮

{𝒛}𝑡=1𝑀

Compute parameter es2mate samples for 
each measurement combina2on in 𝒮

Construct mean parameter vector for 
combina2ons

Perform t-test on each parameter against 
remaining combina2ons

−𝑷𝒊 ∞ < −𝛼
∀𝑖 ∈ 𝒮𝑗∀𝑗 ∈ℳ?

Execute RTO without excluded 
measurement, flag as a poten2al gross error

No

Remove
𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥 −𝑷𝒊 ∞|∀𝑖 ∈ 𝒮𝑗 |∀𝑗 ∈  ℳ

ℳ ←ℳ\𝑗



  

−𝜙 =
𝐶I"(𝑢G + 𝑢H)"

𝑢G𝐶G,,#
−𝑤(𝑢G" + 𝑢H") (15)  

where 𝑤 is a penalty weight. Note that the LHS of (15) uses a 
negative sign to convert the maximization to minimization; 
this keeps consistency with (1). The optimization parameters 
are [12]: 𝑤 = 0.004	(𝑚𝑜𝑙 ∙ 𝑚𝑖𝑛)/𝐿", 𝑄D/L = 110	𝑘𝑐𝑎𝑙/
𝑚𝑖𝑛, 𝐷D/L = 0.1	𝑚𝑜𝑙/𝑚𝑜𝑙, and 𝑢D/L = 50	𝐿/𝑚𝑖𝑛. 

C. Experiment Setup and Assessment 
The scheme proposed in section III is deployed for the RTO 

of the CSTR described previously. The kinetic parameters (𝑘)	
and	𝑘") are assumed to be uncertain in the optimization model 
and they are bounded as 𝜣 = {(𝑘), 𝑘")|0 < 𝑘), 𝑘" ≤ 5}; in the 
plant, they manifest at their nominal values as stated in section 
IVA. All model states and the heat output are assumed to be 
measured 𝒛 = [𝐶G 𝐶J 𝐶I 𝐶J 𝑄]𝑻 with a zero-mean 
additive Gaussian measurement noise of 0.1% the nominal 
measurement values (i.e., 𝒘~𝑁(0,0.001𝒛𝒏𝒐𝒎)).  

The RTO is run for 100 periods indexed as 𝑙 = {0,… , 𝑇Q}. 
In each period, recurrent additive faults are inserted into 
randomly selected measurements with a magnitude sampled 
from a uniform distribution of ±30% the nominal 
measurement value (i.e., 𝑓~0.3𝑈[−𝑧#RD, 𝑧#RD]). The fault 
locations and magnitudes do not vary within an RTO period as 
per assumption 3; however, they do vary with each new RTO 
period. 𝛼 = 0.05 is used for the bootstrapped GED scheme, 
which is deployed alongside a conventional RTO and 
compared in terms of mean parameter error (𝑒B.), sum of 
constraint violations (𝑆𝐴𝑉), and mean process cost (𝜙:), i.e.,  

𝑒B. =
100%
𝑇Q

��𝜃�, − 𝜃,,'KST�
∀V

 (16)  

𝑆𝐴𝑉 =
1
𝑇Q

� (𝑔, − 𝑔D/L)
∀V|X.YX/0#

 (17)  

𝜙: =
1
𝑇Q
�𝜙V
∀V

 (18)  

The RTO sample size is 𝑀 = 50 with a minimum number 
of measurements determined a priori as 𝑛C,D,# = 2; given 
𝑛C = 5, this fulfills the criteria to deploy the proposed scheme 
as discussed in section IIIC. The computational experiments 
were performed on an Intel core i7-4770 CPU @ 3.4 GHz. The 
optimization problems and simulated plant were implemented 
in Pyomo [13] and the IPOPT solver [14] was used. 

D. Single Fault Case 
A single fault is first inserted into the measurements at every 

RTO interval. The summary metrics for this scenario applied 
to the CSTR as per (16)–(18) are shown in Table I (Single fault 
case). While the purity constraint (14) is inactive at the 
optimum, the safety constraint (13) is active and the 
cumulative constraint violations are an order of magnitude 
higher when not using the GED scheme as per the 𝑆𝐴𝑉. As the 
constraint being violated is a heating constraint, these 
excessively hot conditions can lead to equipment damage and 
potentially cause unsafe operation, e.g., injury to operators 
working closely with the CSTR. The reduction in violation is 
achieved through an 88%	success rate in detecting faults when 

using the proposed GED framework. All faults not detected by 
the GED in this experiment were type II errors (false 
negatives). These occur as the parameter estimates generated 
using the faulty measurement were insufficiently erroneous as 
to not influence the estimate quality. The improvement in 
estimate quality is reflected in the reduced estimation error for 
both parameters (𝑒Z+, 𝑒Z1) as shown in Table I; through these 
more accurate parameter estimates, the RTO produces points 
that violate constraint (13) less. The decreased constraint 
violation owed to the proposed method comes with no 
economic sacrifice as reflected in the mean costs (𝜙:) in Table 
I where the prices of both schemes are the same. Indeed, in an 
active purity constraint case, abiding by the constraint could 
lead to higher product grade, thus better economics.  

TABLE I.  CSTR PERFORMANCE 

 Single fault case Double fault case 
Metric RTO RTO+GED RTO RTO+GED 

𝑒!!(%) 8.75 1.55 8.11 1.38 

𝑒!"(%) 9.60 4.90 4.57 1.24 

𝑆𝐴𝑉(𝑘𝑐𝑎𝑙/𝑚𝑖𝑛) 46.97 3.91 26.83 2.72 

𝜙< 15.27 15.27 15.41 15.41 

# of faults inserted − 100 − 200 
# of faults 

correctly detected − 88 − 160 

Constraint violations are shown in Fig. 5, wherein cost 
contours are quantified with respect to the RTO-predicted 
optimal manipulated variable values. The RTO+GED scheme 
is observed to be less clustered in the constraint-violating 
region. Moreover, the standard RTO shows significant 
variance in its operation, with tails extending far into 
constraint violation. In cases where a constraint is violated, the 
RTO+GED scheme violates by a lesser amount than the 
conventional RTO. From the undetected faults, only one leads 
to a severe violation of the heating constraint as shown in Fig. 
5 by the cyan point outside of the constraint boundary (this 
accounts for 2.12	𝑘𝑐𝑎𝑙/𝑚𝑖𝑛 of the 𝑆𝐴𝑉). The remaining 
eleven faults that the GED did not detect led to set points that 
were constraint-abiding or very close to the constraint 
boundary as per the remaining cyan points in Fig. 5. This is 
owed to the parameter-oriented testing approach introduced 
herein, which detects faults only if they are shown to propagate 
meaningfully to the parameters and resulting set points. 

In terms of computational effort, each PE problem to be 
solved required an average of 0.015𝑠. For the CSTR system 
with 𝑛1(5,2) = 10 parameter subsets and a sample size of 
𝑀 = 50; the mean bootstrapping computational effort was 
7.5𝑠. This constitutes the main potential drawback of the 
proposed scheme: in systems with models that require high 
computational effort and have many measurements, the 
bootstrapped GED method may delay the RTO procedure, thus 
causing economic detriment.  

E. Double Fault Case 
Two faults are now inserted into the measurements 

simultaneously and the RTO+GED system must abate their 
effect. Table I summarizes the results for this scenario (Double 
fault case). A slightly lesser 80% success rate is observed in 



  

the two-fault case in terms of correctly identifying and 
eliminating errors whereby both errors were detected for 68% 
of RTO periods and a single error was detected for 24%. This 
minor deterioration in detection quality may occur as more 
measurements are removed from the original set as in the 
CSTR case. After removal of the first measurement, the new 
baseline has only four measurements, which can result in less 
averaging in 𝜽2; thus, noisier estimates that allow for more 
random error to be admitted in the hypothesis tests. In cases 
with high performance deterioration, the critical significance 
level 𝛼 could be tuned to admit more similar estimates. 

Nonetheless, the decrease in success rate for detecting faults 
has little effect on performance as the difference between RTO 
and RTO+GED in the two-fault scenario is akin to that in the 
single-fault scenario in terms of the summary metrics in Table 
I. This is a result of using a parameter-oriented hypothesis test, 
which only detects faults if they have a significant effect on 
the estimate quality. Moreover, the CPU time for this case is 
the same as in the single fault case as computation does not 
scale with number of faults (i.e., the additional hypothesis 
testing cost is negligible with respect to the bootstrap). 

V. CONCLUSION 
A novel bootstrapped GED approach was proposed, which 

can be retrofitted into existing RTO-operated systems and 
leverages modern computational power. The scheme provides 
more accurate set points (i.e., closer to the true plant optima) 
than the traditional RTO method. In doing so, constraints are 
more frequently respected, which is particularly salient in 
settings where process safety constraints are considered. The 
proposed scheme is tested in a CSTR with a heat generation 
constraint whereby random faults are inserted into the 

measurements, the effect of which must be abated and 
identified. The GED+RTO is shown to provide order-of-
magnitude improvement in constraint violation severity with 
respect to the traditional RTO procedure and demonstrates 
high accuracy in detecting faulty measurements. Moreover, 
this proposed scheme performs comparably in terms of 
process economics. This performance improvement is also 
observed in a two-fault case wherein a comparable detection 
rate was observed despite the presence of an additional fault.  

The system tested in this work has few measurements and 
low computational burden, which allow for quick execution 
of the proposed algorithm. Future works will examine the 
performance of the scheme on systems with more 
measurements and more complex process models, wherein 
the computational effort of the scheme may be a limiting 
factor. On the other hand, more measurements will provide 
better averaging and truer parameter distributions with which 
to perform hypothesis testing, thus avoiding any deterioration 
caused by small sample sizes. 
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