Bootstrapped gross error detection for efficient and fault-tolerant real-time optimization

American Control Conference: July 10th, 2024

Gabriel D. Patrón

Luis Ricardez-Sandoval

Department of Chemical Engineering

Outline

- 1. Introduction and motivation for online economic optimization
- 2. Two-step real time optimization (RTO)
 - a. Theory
 - b. Drawbacks and motivation
- 3. Bootstrapped gross error detection (GED) for RTO
 - a. Formulations
 - b. Bootstrapping
 - c. Fault-identification
 - d. CSTR case study

Online economic optimization

Why?

- Disturbances (*d*)
- Changing economics (P)
- Competitiveness
- Sustainability

How?

- Economic model (ϕ)
- Process model (f)
- Sensor measurements (z)

Uncertainty

The two-step real-time optimization^[1]

- A real-time optimizer (RTO) provides economically optimal decisions (*u*) to the plant
- The plant is subject to disturbances (d) and provides feedback (z)
- A parameter estimation (PE) problem provides the RTO with updated uncertainties (θ) at every execution

Drawbacks of two-step RTO

- Instrumentation faults can lead to measurement bias i.e., systematic error
- Measurement error can propagate to the estimated parameters
- The parameter errors can result in economic suboptimalities and constraint violations

Goals for GED-RTO

- Pose parameter-driven GED method that is easily retrofitted^[2,3,4] into existing RTO systems
- Leverage computational resources to achieve GED without requiring additional RTO steps^[5]

PAGE 5

^[3] D.B. Özyurt, R.W. Pike. Comput. Chem. Eng., vol. 28, no. 3, pp. 381–402. 2004.

Two-step RTO formulations^[1]

$$\min_{u} \phi(u, \hat{x},)$$
s.t.
$$f(d, u, \hat{x}, \hat{\theta}) = 0$$

$$g(d, u, \hat{x}) \leq 0$$

$$u_{min} \leq u \leq u_{max}$$

$$u \in \mathbb{R}^{n_u}, d \in \mathbb{R}^{n_d}, \hat{x} \in \mathbb{R}^{n_x}$$

- Economic function (ϕ) solved subject to steady-state model (f)
- ϕ dependence on state and input variables (u, \hat{x})
- Model subject to parameters (θ)

$$\min_{\widehat{\boldsymbol{\theta}}} \|\widehat{\boldsymbol{z}} - \overline{\boldsymbol{z}}\|_{\boldsymbol{Q}_{\boldsymbol{z}}^{-1}}^{2} \\
s.t. \\
f(\boldsymbol{d}, \boldsymbol{u}, \widehat{\boldsymbol{x}}, \widehat{\boldsymbol{\theta}}) = \mathbf{0} \\
h(\widehat{\boldsymbol{x}}) = \widehat{\boldsymbol{z}} \\
\boldsymbol{\theta}_{min} \leq \widehat{\boldsymbol{\theta}} \leq \boldsymbol{\theta}_{max} \\
\boldsymbol{z} \in \mathbb{R}^{n_{z}}, \ \widehat{\boldsymbol{\theta}} \in \mathbb{R}^{n_{\theta}}$$

- Least-squares minimization of measurement predictions (\$\hat{z}\$) and averaged measurements (\$\bar{z}\$)
- Uses inverse covariance matrix (\boldsymbol{Q}_z^{-1}) for weighting

Parameter bootstrapping^[5]

- Build estimated parameter sample through bootstrapping
- Re-sample the measurement sample $\{z_{t=i}\}_{i=1}^{M}$ using M-1 measurements
- Each measurement subsample is used to generate a least-squares parameter sample $\{\widehat{\boldsymbol{\theta}}_{t=i}\}_{i=1}^{M}$

Measurement sets

- \mathcal{M} is measurement set
- $\mathcal{P}(\mathcal{M})$ is the power set of measurements
- $S = \mathcal{P}_K(\mathcal{M})$ is the cardinality K subset of the power set
- $S_j = \{S | j \in S\}$ is the subset of S containing measurement j

Multi-parameter t-test

Hypothesis test:

$$H_0: \overline{\boldsymbol{\theta}} = \overline{\boldsymbol{\theta}}_i$$

$$H_1: \overline{\boldsymbol{\theta}} \neq \overline{\boldsymbol{\theta}}_i$$

• Rejection criteria:

$$\|-\boldsymbol{P}_i\|_{\infty} > -\alpha \ \forall i \in \mathcal{S}_i$$

 If multiple faults, sensor with largest probability of being faulty is:

$$j = argmax\{||-P_i||_{\infty}|\forall i \in S_j|\forall j \in \mathcal{M}\}$$

Parameter-driven GED approach for RTO

1. Collect an M-length steady-state sample of \mathcal{M} :

$$\{\boldsymbol{z}\}_{t=1}^{M}$$

2. Construct partial measurement vectors:

$$\zeta_i \forall i \in S$$

3. Compute parameter-estimate samples:

$$\{\boldsymbol{\theta}_i\}_{t=1}^M \forall i \in \mathcal{S}$$

- 4. Perform t-test. Do all measurements lead to statistically equivalent estimates?
 - a. Yes: go to 5
 - b. No: remove measurement with highest probability of being erroneous and go to 2
- 5. Execute RTO with gross error omitted and provide decision to plant

Computational complexity

- Worst-case complexity is for scenario when measurements are reduced to $n_{z,min}$
- A combinatorial number of potential measurement subsets of $n_{z,min}$ cardinality given a set of n_z measurements:

$$n_K(n_z, n_{z,min}) = \frac{n_z!}{n_{z,min}! (n_z - n_{z,min})!}$$

• Accordingly, the bootstrapping procedure requires the following number of PE problems to be solved pessimistically:

$$n_{PE} = n_K \times M$$

CSTR case study^[6]

- Maximize productivity in C while minimizing input
- Impose maximum heat generation (Q) and selectivity (D)

$$\max_{\mathbf{u}} \phi \coloneqq \frac{C_C^2 (u_A + u_B)^2}{u_A C_{A,in}} - w(u_A^2 + u_B^2)$$

$$\mathbf{f}(\mathbf{u}, \widehat{\mathbf{x}}, \widehat{\boldsymbol{\theta}}) = \mathbf{0}$$

$$g_j \le 0 \ \forall j \in \{Q, D\}$$

$$0 \le u_A, u_B \le u_{max}$$

CSTR case study

Reaction kinetics constants are the estimated parameters:

$$\boldsymbol{\theta} = [k_1 \quad k_2]^T$$

 Measurements are comprised of composition and heat generation:

$$\mathbf{z} = [C_A \quad C_B \quad C_C \quad C_D \quad Q]^T$$

• Faults inserted into random sensors from uniform distribution:

$$f \sim U[-0.3 \mathbf{z}_{nom}, 0.3 \mathbf{z}_{nom}]$$

CSTR case study

- Single and double fault case studied
- RTO vs RTO+GED compared on:
 - Parameter error (e_{k_1}, e_{k_2})
 - Lower error with GED
 - Cumulative constraint violation (SAV)
 - Better satisfaction with GED
 - Process profit $(\bar{\phi})$
 - Same cost
 - # of correctly detected faults

	Single fault case		Double fault case	
Metric	RTO	RTO+GED	RTO	RTO+GED
$e_{k_1}(\%)$	8.75	1.55	8.11	1.38
$e_{k_2}(\%)$	9.60	4.90	4.57	1.24
SAV(kcal/min)	46.97	3.91	26.83	2.72
$ar{\phi}$	15.27	15.27	15.41	15.41
# of faults inserted	_	100	_	200
# of faults correctly detected	_	88	_	160

CSTR case study

- Single and double fault case studied
- RTO vs RTO+GED compared on:
 - Parameter error (e_{k_1}, e_{k_2})
 - Lower error with GED
 - Cumulative constraint violation (SAV)
 - Better satisfaction with GED
 - Process profit $(\bar{\phi})$
 - Same cost
 - # of correctly detected faults

Conclusions

- A novel bootstrapped GED approach was proposed:
 - Easily retrofitted into existing RTO
 - Leverages modern computational resources
- Effect of gross errors abated in CSTR:
 - High percentage of faulty sensors found
 - Better constraint satisfaction (i.e., safer)

Future work

Lower computational complexity (important for large systems)

Acknowledgements

References

- [1] M.L. Darby, M. Nikolaou, J. Jones, D. Nicholson, "RTO: An overview and assessment of current practice," *J. Process Control*, vol. 21, no. 6, pp. 874–884, Jul. 2011.
- [2] S.A. Bhat, D.N. Saraf, "Steady-State Identification, Gross Error Detection, and Data Reconciliation for Industrial Process Units," *Ind. Eng. Chem. Res.*, vol. 43, no. 15, pp. 4323–4336, Jun. 2004.
- [3] D.B. Özyurt, R.W. Pike, "Theory and practice of simultaneous data reconciliation and gross error detection for chemical processes," *Comput. Chem. Eng.*, vol. 28, no. 3, pp. 381–402, Mar. 2004.
- [4] I. Kim, M.S. Kang, S. Park, T.F. Edgar, "Robust data reconciliation and gross error detection: The modified MIMT using NLP," *Comput. Chem. Eng.*, vol. 21, no. 7, pp. 775–782, Mar. 1997.
- [5] G.D. Patrón, L. Ricardez-Sandoval, "Low-Variance Parameter Estimation Approach for Real-Time Optimization of Noisy Process Systems," *Ind. Eng. Chem. Res.*, vol. 61, no. 45, pp. 16780–16798, Nov. 2022.
- [6] G. François, D. Bonvin, "Use of Transient Measurements for the Optimization of Steady-State Performance via Modifier Adaptation," *Ind. Eng. Chem. Res.*, vol. 53, no. 13, pp. 5148–5150, Sept. 2013.

