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1. Introduction and motivation for online economic optimization

2. Two-step real time optimization (RTO)
a. Theory
b. Drawbacks and motivation
3. Bootstrapped gross error detection (GED) for RTO
a. Formulations
b. Bootstrapping
c. Fault-identification

d. CSTR case study
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Why? How?
= Disturbances (d) = Economic model (¢) o
= Changing economics (P) = Process model (f) . Uncertainty
= Competitiveness » Sensor measurements (z)
= Sustainability P“Ces (P)
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The two-step real-time optimization™

= A real-time optimizer (RTO) provides { PE }
economically optimal decisions (u) to the
plant Parameters (6)
= The plant is subject to disturbances (d) and
. Feedback
provides feedback (z) RTO ee(z)ac

= A parameter estimation (PE) problem
provides the RTO with updated

uncertainties (0) at every execution Dlsturbances‘ﬂ Plant }

Decisions (u)

(d)
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[1] M.L. Darby, M. Nikolaou, J. Jones, D. Nicholson. J. Process Control, vol. 21, no. 6, pp. 874—884.2011.



Drawbacks of two-step RT0

= Instrumentation faults can lead to measurement bias i.e., systematic error

= Measurement error can propagate to the estimated parameters

= The parameter errors can result in economic suboptimalities and constraint
violations

Goals for GED-RTO

= Pose parameter-driven GED method that is easily retrofitted!234! into existing

RTO systems
= Leverage computational resources to achieve GED without requiring additional
RTO steps!s!
2] S.A. Bhat, D.N. Saraf. Ind. Eng. Chem. Res., vol. 43, no. 15, pp. 4323— . 2004. UNIVERSITY OF
Eg% ls)%lz)};ytur?,lg\/s\l I?ifke{. goip%t.cghem#Eng.,\}of?;& no.53,p111))p.4§8f—:(?23.62004.4 PAGE 5 % WATERLOO

[4] 1. Kim, M.S. Kang, S. Park, T.F. Edgar. Comput. Chem. Eng., vol. 21, no. 7, pp. 775—782. 1997.
[5] G.D. Patron, L. Ricardez-Sandoval. Ind. Eng. Chem. Res., vol. 61, no. 45, pp. 16780—-16798. 2022.



Two-step RTO formulations™

min ¢ (u, X, ) min||z — z||Q —1

u 0 z
s.t. s.t.
f(du,x,8)=0 f(d,ux,0)=0
g(d,ux) <0 h(x) =2
Upin < U < Upax Omin = BAS O max
ueRw, deR",x € R™ z € R"z, § € R"¢

= Economic function (¢) solved subject to = Least-squares minimization of
steady-state model (f) measurement predictions (Z) and

: averaged measurements (z
= ¢ dependence on state and input 5 (2)

variables (u, X) » Uses inverse covariance matrix (Q, ')
for weighting
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[1] M.L. Darby, M. Nikolaou, J. Jones, D. Nicholson. J. Process Control, vol. 21, no. 6, pp. 874—884.2011.

= Model subject to parameters (0)



= Build estimated parameter sample

through bootstrappin
& pping ﬁtzﬂf: E’tlzm E'Ilzm_l i-":lzz zt|=1
= Re-sample the measurement sample : g
M . '
Z,—;};—, using M — 1 measurements : T
{ t l}l_l 5 ﬁI!:E: rItI:M Itlzm_]_ : zi:I:E 3[:':1
= Each measurement subsample is used 5 r ! | g
to generate a least-squares parameter 7t=1" Zt=M Zi=M-1 Zr=2 Zi=1

M
=

sample {0,-;},_
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[5] G.D. Patron, L. Ricardez-Sandoval. Ind. Eng. Chem. Res., vol. 61, no. 45, pp. 16780—16798. 2022.



M =1{z1,2,,23}
PM) = {{ Wz Az b Azz {21, 223 {21, 233422, 23}, {21, 22, 233}
S =P, (M) ={z1, 22}, {21, 23}, {22, 23}}

M 1s measurement set

P (M) is the power set of measurements

§ = Py (M) is the cardinality K subset of the power set

S; = {S|j € 8} is the subset of § containing measurement j
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= Hypothesis test:

HO: a — 51
Hl: 5 * ai
= Rejection criteria: @
|=Pille, > —a Vi € S;
M = {2z, 23,23}
= If multiple faults, sensor with largest P(M) = {{ }{z1},{z2}, {23}, {z1, 22}, {z1, 23}, {22, 23}, {71, 22, 23}}
probability of being faulty is: S =Py (M) = {{z1, 22}, {z1, 23}, {22, 23}}

j= argmax{II—PillooWi € §;|Vj € ]V[}
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Parameter-driven GED approach for RTO0

1.  Collect an M-length steady-state sample of M:

{Z}{LVI:1

2. Construct partial measurement vectors:

ViES
3. Compute parameter-estimate samples:
{03l vies @
4.  Perform t-test. Do all measurements lead to M ={z{,29, 73}
statistically equivalent estimates? PM) = {{}, {21}, {22}, (23}, {21, 22}, {20, 23}, (22, z3}, {21, 22, 23 )}
a. Yes:gotos S=P, (M) = {{21,22}; {21;23}; {22;23}}

b.  No: remove measurement with highest probability of being
erroneous and go to 2

5. Execute RTO with gross error omitted and provide
decision to plant
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Gomputational complexity

= Worst-case complexity is for scenario when measurements are reduced to n, i

= A combinatorial number of potential measurement subsets of n, ,,;, cardinality
given a set of n, measurements:

n,!

nz,min! (le o nz,min)!

Nk (nz» nz,min) =

= Accordingly, the bootstrapping procedure requires the following number of PE
problems to be solved pessimistically:

ananXM
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CSTR case study'®

= Maximize productivity in C while minimizing Uy Ug
input _I |7

= Impose maximum heat generation (Q) and
selectivity (D)

Cc”(uy + up)?

max ¢ = —w(uy® +up?) XD

u UACy in
f(u,f,a) =0 Q'f
gj < 0Vj€{Q,D} C;Vie{A B,C,D}
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[6] G. Francois, D. Bonvin. Ind. Eng. Chem. Res., vol. 53, no. 13, pp. 5148—5150. 2013.



GCSTR case study

= Reaction kinetics constants are the estimated Uy Ug
parameters: _I |7
0 =[ky ky]"
= Measurements are comprised of composition and -

heat generation:
z=[Cs Cp Cc Cp QI (OO

= Faults inserted into random sensors from ki,k, Q,D
uniform distribution:

fNU [_0-3Zn0m» O-BZnom]

Lciw € {A,B,C,D}
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GCSTR case study

= Single and double fault case studied

Single fault case = Double fault case
- RTO VS RTO+GED COmpared on: Metric RTO RTO+GED RTO RTO+GED
= Parameter error (ekl, ekz) ex, (%) 8.75 1.55 8.11 1.38
0
. Lower error with GED ex, (%) 9.60 4.90 457 1.24
, L SAV(kcal /min) 4697 3.91 26.83 2.72
= Cumulative constraint violation (SAV)
@ 15.27 15.27 15.41 15.41
= Better satisfaction with GED
# of faults
. — 100 — 200
— inserted
= Process profit (¢)
# of faults
= Same cost correctly detected 88 B 160

= # of correctly detected faults
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-
GSTR case study 20

40 16
. . 2
» Single and double fault case studied 2 3 '
3
= RTO vs RTO+GED compared on: E 20
S: 4
10 -
= Parameter error (€, ex,) _g
0 -12
= Lower error with GED 0 Us 19 olyminy 20
19.0
= Cumulative constraint violation (SAV) o] — Omx
. . . _ | . E¥8Iggg Sﬁfﬁe?fcc’jced
= Better satisfaction with GED £ 18.01
— ? 17.5
= Process profit (¢) £
< 17.0 1
= Same cost 16.5 A
« # of correctly detected faults 0 T o 1 5

Ug (mol/min) UNIVERSITY OF
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GConclusions
= A novel bootstrapped GED approach was proposed:

» Easily retrofitted into existing RTO

= Leverages modern computational resources

= Effect of gross errors abated in CSTR:
= High percentage of faulty sensors found

= Better constraint satisfaction (i.e., safer)

= Lower computational complexity (important for large systems)
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